# Etude d'une Suspension Magnétique Active pour Turbocompresseur Eléments de correction

# A.CARACTERISTIQUES D'UNE SUSPENSION A.1 Données préliminaires

| A.1.1 | $N_{max} = 28500 \text{ tr/min soit } \Omega_{max} = 2984,5 \text{ rad/s}$                                    |
|-------|---------------------------------------------------------------------------------------------------------------|
| A.1.2 | $m = \frac{F_{\rm B}}{d\Omega_{\rm max}^2} = \frac{87,5}{10.10^{-6} (2984,5)^2} = 0,98 \text{ kg}$            |
| A.1.3 | $F_{Bf_0} = md\Omega_0^2 = 0.98 \times 10.10^{-6} \times (2\pi \times 83)^2 = 2.66 N$                         |
| A.1.4 | $e_0 = 450 \ \mu m \ \text{et} \ \Delta e_{\text{max}} = 20\% \ e_0 = 0, 2 \times 0, 45.10^{-3} = 90 \ \mu m$ |
| A.1.5 | M' = 24,64 kg                                                                                                 |

#### A.2 Suspension classique

#### Modélisation par un système masse-ressort



Modélisation par un système masse-ressort avec amortissement



| A.2.9  | $\omega_0 = \sqrt{\frac{k}{M}}$ soit $k = \omega_0^2 M = 3,3 \text{ N/}\mu\text{m}$ .          |                                        |  |
|--------|------------------------------------------------------------------------------------------------|----------------------------------------|--|
| A.2.10 | $F_{\text{ext}} = kx_{\infty}$<br>$F_{\text{ext}} = 3,3.10^6 \times 10.10^{-6} = 33 \text{ N}$ | 33 N                                   |  |
|        |                                                                                                | $0 \qquad t \rightarrow 50 \text{ ms}$ |  |

#### Modélisation par un système masse-ressort amorti avec contrôle intégral

| A.2.11 | $M\frac{d^{2}x}{dt^{2}} = F_{ext} - kx - a\frac{dx}{dt} - b\int_{-\infty}^{t} x(u)du  \text{soit}  K_{mrai}(p) = k + ap + \frac{b}{p} + Mp^{2}$                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.2.12 | $x_{\infty} = \lim_{p \to 0} pX(p) = \lim_{p \to 0} p \frac{F_{ext}(p)}{K_{mrai}(p)} = \lim_{p \to 0} p \frac{F_0 / p}{K_{mrai}(p)} = F_0 \lim_{p \to 0} \frac{1}{k + b / p} = 0.$ |
|        | Avantage de l'action intégrale : plus d'erreur statique.                                                                                                                           |
| A.2.13 | La raideur minimale est de 123 dB soit $10^{123/20} = 1,41 \text{ N/}\mu\text{m}$ . Cette raideur est bien supérieure à                                                            |
|        | 1.3 N/um.                                                                                                                                                                          |

### A.3 Suspension magnétique





#### **Influence des perturbations**



| A.3.13 | $\frac{\varepsilon(p)}{\varepsilon(p)} = \frac{H_1(p)}{\varepsilon(p)} = -\frac{1}{\varepsilon(p)}$                                                                                                       |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | $F_{ext}(p) = 1 + H_1(p)H_2(p)$ $Mp^2 + C_X(p)$                                                                                                                                                           |  |  |
| A.3.14 | $\varepsilon_{\infty} = \lim_{p \to 0} p \frac{F_0}{P} \left( -\frac{1}{Mp^2 + k_0 \frac{1 + \alpha \tau_1 p}{1 + \sigma_1 r}} \right) = -\frac{F_0}{k_0}$                                                |  |  |
|        | $(1+\tau_1 p)$                                                                                                                                                                                            |  |  |
|        | L'erreur statique est non nulle, le correcteur $C_{X2}$ ne suffit donc pas.                                                                                                                               |  |  |
| A.3.15 | Il est nécessaire d'introduire un correcteur proportionnel et intégral en amont de la perturbation.                                                                                                       |  |  |
|        | Soit $C_{x3}(p) = 1 + \frac{1}{\tau_2 p} = \frac{1 + \tau_2 p}{\tau_2 p}$                                                                                                                                 |  |  |
|        | Remarque : un correcteur intégrateur est impossible, le système serait instable.                                                                                                                          |  |  |
| A.3.16 | Pour ne pas diminuer la marge de phase, le correcteur PI ne doit pas avoir d'influence sur l'avance de phase obtenue avec $C_{x2}(p)$ . La pulsation de coupure du PI ( $\frac{1}{2}$ ) doit donc être au |  |  |
|        | moins une décade avant $\frac{1}{\alpha \tau_1}$ .                                                                                                                                                        |  |  |
|        | $\tau_2 = 10\alpha \tau_1$ . Si $\tau_1 = 1,1$ ms et $\alpha = 3, \tau_2 = 33$ ms.                                                                                                                        |  |  |
| A.3.17 | <sup>7</sup> $H_{BOX3}(p) = k_{01} \frac{1 + \alpha \tau_1}{1 + \tau_1} \frac{1 + \tau_2 p}{\tau_2 p} \frac{1}{Mp^2}$                                                                                     |  |  |
| A.3.18 | $\frac{X(p)}{F_{ext}(p)} = \frac{1}{Mp^2 + C_X(p)}. \text{ On a donc } K_f(p) = Mp^2 + C_X(p) \text{ et } K(p) = C_X(p).$                                                                                 |  |  |
| A.3.19 | $K(p) = k_{01} \frac{1 + \alpha \tau_1 p}{1 + \tau_1 p} \frac{1 + \tau_2 p}{\tau_2 p} \text{ avec } \alpha_0 = 3, \ \tau_1 = 1,1 \text{ ms}, k_{01} = 1,77.10^6 \text{ et } \tau_2 = 33 \text{ ms}.$      |  |  |
| A.3.20 |                                                                                                                                                                                                           |  |  |
|        |                                                                                                                                                                                                           |  |  |
|        |                                                                                                                                                                                                           |  |  |
|        |                                                                                                                                                                                                           |  |  |
|        | 145                                                                                                                                                                                                       |  |  |
|        | 140 +20 dB/de                                                                                                                                                                                             |  |  |
|        | 135 20log(αk <sub>at</sub> ) = 134,5 dB                                                                                                                                                                   |  |  |
|        | $\frac{1}{\sqrt{2}\tau_{\rm T}} = 521, {\rm Strad/s}$                                                                                                                                                     |  |  |
|        | 125                                                                                                                                                                                                       |  |  |
|        | $20\log(k_{ai}) = 125  dB$                                                                                                                                                                                |  |  |
|        |                                                                                                                                                                                                           |  |  |
|        | $\frac{1}{\tau_2} = 30,3 \operatorname{rad}/s$ $\frac{1}{\tau_2} = 303 \operatorname{rad}/s$ $\frac{1}{\tau_1} = 303 \operatorname{rad}/s$                                                                |  |  |
|        | $10^{\circ}$ $10^{1}$ $10^{2}$ $10^{3}$ $10^{4}$                                                                                                                                                          |  |  |
|        |                                                                                                                                                                                                           |  |  |



# **B. REALISATION D'UN PALIER MAGNETIQUE ACTIF**

| B.1. Electro-aimant |                                                                                                                                                                                                                                                                  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| B.1.1               | $F = \frac{B^2 S}{2\mu_0} \text{ soit } F_{P_{max}} = \frac{1.5^2}{2\mu_0} = 89,5 \text{ N/cm}^2$                                                                                                                                                                |  |  |
| B.1.2               | On applique le théorème d'Ampère : $\oint \vec{H} d\vec{l} = Ni \text{ soit } \frac{B}{\mu_0} \left( 2e + \frac{l_s}{\mu_{rs}} + \frac{l_r}{\mu_{rr}} \right) = Ni \text{ avec } l_s \text{ et } l_r \text{ les}$                                                |  |  |
|                     | longueurs des lignes de flux dans le stator (l'électro-aimant) et le rotor, et $\mu_s$ et $\mu_r$ les perméabilités relatives des tôles magnétiques du stator et du rotor. D'après l'énoncé, $\mu_s$ et $\mu_r$                                                  |  |  |
|                     | sont infinies. On a donc : $B = \frac{\mu_0 Ni}{2e}$ .                                                                                                                                                                                                           |  |  |
|                     | $F = \left(\frac{\mu_0 Ni}{2e}\right)^2 \frac{S}{2\mu_0} = \frac{\mu_0 SN^2}{8} \left(\frac{i}{e}\right)^2, \text{ on a donc } F = \lambda \left(\frac{i}{e}\right)^2 \text{ avec } \lambda = \frac{\mu_0 SN^2}{8}.$                                             |  |  |
| B.1.3               | La force F fournie par l'électro-aimant est uniquement une force d'attraction. Pour contrôler un axe, il est nécessaire d'avoir $n_1 = 2$ électro-aimants situés de part et d'autre du rotor. Pour contrôler le plan, il en faudra donc $n_2 = 4$ .              |  |  |
| B.1.4               | $dF = -\frac{2\lambda i_0^2}{e_0^3}de + \frac{2\lambda i_0}{e_0^2}di \text{ soit avec } F_0 = \lambda \left(\frac{i_0}{e_0}\right)^2,  dF = -2\frac{F_0}{e_0}de + 2\frac{F_0}{i_0}di.$                                                                           |  |  |
|                     | On a donc bien $dF = \gamma_1 de + \gamma_2 di$ avec $\gamma_1 = -2\frac{F_0}{e_0}$ et $\gamma_2 = 2\frac{F_0}{i_0}$ .                                                                                                                                           |  |  |
| B.1.5               | Le terme $\gamma_1 = \frac{\partial F}{\partial e} = -2\frac{F_0}{e_0}$ est bien homogène à une raideur d'un point de vue mécanique (N/m)                                                                                                                        |  |  |
|                     | et $\gamma_1$ est négatif.                                                                                                                                                                                                                                       |  |  |
|                     | Lorsque la raideur d'un palier est positive, le palier peut être comparé à un ressort car il s'oppose au déplacement. Il est stable.                                                                                                                             |  |  |
|                     | Par contre, lorsque la raideur est négative, le palier favorise l'écartement par rapport à sa position d'équilibre. Si e augmente, la force appliquée par l'électro-aimant diminue, le rotor s'écarte davantage. On parle alors d'instabilité en boucle ouverte. |  |  |
| B.1.6               | $K_{N} = 2\frac{F_{0}}{e_{0}} = 2\frac{175}{450.10^{-6}} = 0,777 \text{ N/}\mu\text{m}$                                                                                                                                                                          |  |  |
| B.1.7               | La raideur négative est de 117,8 dB. Cette raideur reste inférieure à la raideur minimale de la suspension qui est d'environ de 122,5 dB. La suspension reste donc stable.                                                                                       |  |  |
|                     | En réalité, cette raideur négative est intégrée dans l'asservissement.                                                                                                                                                                                           |  |  |



On obtient 
$$f_{max} = \frac{1}{2\pi} \frac{v_{Lmax}}{LI_p}$$
 soit  $f_{max} = \frac{1}{2\pi} \frac{150}{43 \cdot 10^{-3} \times 2} = 277,5$  Hz.  
Au delà de  $f_{max}$ , l'amplificateur de puissance saturera et on ne pourra plus moduler la force dans sa totalité.

**B.3.** Amplificateur de courant

| B.3.1  | $\langle \mathbf{u} \rangle = (2\alpha_{\rm H} - 1)E$                                                                                                                                                                                                                    |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | $+\mathbf{E}$ $-\mathbf{E}$ $\alpha_{H}\mathbf{T}$ $\mathbf{T}$ $\mathbf{t}$                                                                                                                                                                                             |  |  |
| B.3.2  | $\langle u \rangle = (2\alpha_{\rm H} - 1)E = k_{\rm v}u_{\rm c}$ soit $\alpha_{\rm H} = \frac{1}{2} + \frac{k_{\rm v}u_{\rm c}}{2E}$                                                                                                                                    |  |  |
| B.3.3  | $u = Ri + L\frac{di}{dt}$ , soit $U(p) = (R + Lp)I(p)$ .                                                                                                                                                                                                                 |  |  |
|        | On a donc $H_E(p) = \frac{I(p)}{U(p)} = k_E \frac{1}{1 + \tau_E p}$ avec $k_E = \frac{1}{R}$ et $\tau_E = \frac{L}{R}$ .                                                                                                                                                 |  |  |
| B.3.4  | R = 1,5 Ω et L = 43 mH, soit $k_E = 0,66 \Omega^{-1}$ et $\tau_E = 28,66$ ms.                                                                                                                                                                                            |  |  |
| B.3.5  | $\tau_E$ dépend de L. Or l'inductance équivalente de l'électro-aimant dépend de la largeur de l'entrefer. $\tau_E$ est donc ici calculée pour un entrefer correspondant au rotor centré.                                                                                 |  |  |
| B.3.6  | $f_{\rm E} = \frac{1}{2\pi\tau_{\rm E}} = 5,55 {\rm Hz}$                                                                                                                                                                                                                 |  |  |
| B.3.7  | La tension aux bornes de l'électro-aimant est décomposable en une composante continue $\langle u \rangle$                                                                                                                                                                |  |  |
|        | et une composante alternative à la fréquence de découpage. On a $f_e \ll f_{hacheur}$ , la composante alternative sera donc filtrée. On suppose que la transformée de Laplace de $u(t)$ est égale à la transformée de Laplace de $\langle u(t) \rangle$ (modèle moyen) : |  |  |
|        | $H_{HE}(p) = \frac{I(p)}{U_C(p)} = \frac{I(p)}{U(p)} \frac{U(p)}{U_C(p)} \approx H_E(p)k_V$                                                                                                                                                                              |  |  |
| B.3.8  | La bande passante à -1dB de la sonde LAH 25-NP est de 200kHz. La fréquence de coupure de l'électro-aimant étant de 5,55 Hz. La fonction de transfert de la sonde est équivalente à un gain pur : $H_C(p) = k_C$ .                                                        |  |  |
| B.3.9  | Le courant maximal étant de 4A, les<br>primaires sont mis en série et forment<br>3 spires (variante 3). Le rapport est de<br>$K_N = 3:1000.$                                                                                                                             |  |  |
| B.3.10 | La résistance de mesure fixe le gain de la sonde. On a $R_M = \frac{V_M}{I_P K_N} = \frac{k_C}{K_N}$ , soit                                                                                                                                                              |  |  |

|        | $R_{\rm M} = \frac{2,5}{3/1000} = 833,33 \ \Omega .$                                                                                                                                                                                    |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| B.3.11 | $U_{I}(p) \xrightarrow{\epsilon_{I}(p)} C_{I}(p) \xrightarrow{H_{HE}(p)} H_{HE}(p) \xrightarrow{I(p)}$                                                                                                                                  |  |
| B.3.12 | $H_{BOI}(p) = C_{I}(p)H_{HE}(p)H_{C}(p) \text{ soit } H_{BOI}(p) = C_{I}(p)\frac{k_{V}k_{E}k_{C}}{1+\tau_{E}p}$                                                                                                                         |  |
| B.3.13 | $\varepsilon_{I\infty} = \lim_{p \to 0} p\varepsilon(p) = \lim_{p \to 0} p \frac{U_I(p)}{1 + H_{B0I}(p)} = \lim_{p \to 0} \frac{U_{I0}}{1 + H_{B0I}(p)} = \frac{U_{I0}}{1 + k_I k_V k_E k_C}$                                           |  |
| B.3.14 | Il faut ajouter une intégration dans la boucle ouverte, on utilise donc un correcteur proportionnel et intégral (PI).                                                                                                                   |  |
|        | On aurait pu utiliser un intégrateur pur, mais il est préférable pour augmenter les performances d'utiliser un PI.                                                                                                                      |  |
| B.3.15 | $C_{I}(p) = k_{I} \left( 1 + \frac{1}{\tau_{I}p} \right) = k_{I} \frac{1 + \tau_{I}p}{\tau_{I}p}$                                                                                                                                       |  |
| B.3.16 | $H_{BOI}(p) = \frac{k_{I}(1+\tau_{I}p)}{\tau_{I}p} \frac{k_{V}k_{E}k_{C}}{(1+\tau_{E}p)} = \frac{k_{I}k_{V}k_{E}k_{C}}{\tau_{E}p}.$                                                                                                     |  |
|        | La marge de phase de cette boucle de courant est donc de 90° et la marge de gain infinie.                                                                                                                                               |  |
| B.3.17 | $H_{I}(p) = \frac{\frac{k_{I}k_{V}k_{E}}{\tau_{E}p}}{1 + \frac{k_{I}k_{V}k_{E}k_{C}}{\tau_{E}p}} = \frac{1}{k_{C}}\frac{1}{1 + \frac{\tau_{E}}{k_{I}k_{V}k_{E}k_{C}}p}  \text{soit } H_{I}(p) = \frac{k_{a}}{1 + \frac{p}{\omega_{A}}}$ |  |
|        | La bande passante est donc $\omega_{A} = \frac{k_{I}k_{V}k_{E}k_{C}}{\tau_{E}}$ .                                                                                                                                                       |  |
| B.3.18 | $f_{A} = 1500 \text{ Hz et } k_{I} = \frac{2\pi f_{A}\tau_{E}}{k_{V}k_{E}k_{C}} = \frac{2\pi f_{A}L}{k_{V}LRk_{C}} = \frac{2\pi f_{A}L}{k_{V}k_{C}}$                                                                                    |  |
|        | soit $k_1 = \frac{2\pi \times 1500 \times 43.10^{-3}}{15 \times 2.5} = 10.8$                                                                                                                                                            |  |
| B.3.19 | $A(p) = \frac{4\lambda v_0}{e_0} \frac{k_a}{1 + \frac{p}{\omega_A}} = \frac{A}{1 + \frac{p}{\omega_A}}$                                                                                                                                 |  |

## **B.4.1** Caractéristiques à prendre en compte lors du choix d'un capteur : · la linéarité, la précision, la fidélité • la plage de mesure, · la bande passante, le temps de réponse, • le rapport signal/bruit, • la dérive thermique, • les dimensions, la facilité de mise en œuvre, le prix... et pour notre application • la sensibilité au champ magnétique extérieur. • Les capteurs à effet Hall : Ces capteurs, fixés au stator, fournissent une image du champ **B.4.2** magnétique produit par un aimant fixé au rotor. L'induction mesurée au stator varie en fonction de la position axiale du rotor et fournit donc une image de l'entrefer. Ces capteurs sont faciles à mettre en œuvre et leur prix de revient est faible. Ils sont néanmoins à déconseiller à cause de leur grande sensibilité au champ magnétique extérieur (par principe). • Les capteurs optiques : Ces capteurs émettent un rayon lumineux qui se réfléchit sur une cible. L'intensité du signal réfléchi est fournie par un phototransistor. Cette intensité dépendant de la distance entre la cible et le capteur, on obtient une image de la position. Ce capteur n'est pas sensible au champ magnétique, possède un rapport signal/bruit excellent, une bande passante importante, et est très simple à mettre en œuvre. Néanmoins, sa dérive thermique est très élevée car le gain du phototransistor dépend fortement de la température. • Les capteurs à réluctance variable : Ils sont réalisés grâce à une inductance dont une partie du circuit magnétique est située au stator (avec le bobinage) tandis que l'autre partie est située au rotor. La valeur de l'inductance dépendant de l'entrefer, on obtient une image de la distance entre le rotor et le stator. • Les capteurs à courants induits : Un bobinage statorique est alimenté par un courant haute fréquence. Tant qu'il est seul, ce bobinage peut être assimilé à une inductance. Par contre, lorsqu'on approche un conducteur, des courants sont induits à l'intérieur de ce dernier et modifient la fonction de transfert du capteur. Cette modification dépendant de la distance entre le bobinage et le conducteur, on obtient une image de l'entrefer. Les capteurs potentiométriques, capacitifs, etc B.4.3 $L = \frac{N^{2}}{\Re}$ où $\Re$ est la réluctance équivalente du circuit magnétique du capteur. La perméabilité du détecteur et du rotor étant infinie, on a $\Re = \frac{1}{\mu_0} \frac{2e}{S_d}$ . Soit $L = \frac{\mu_0 S_d N'^2}{2e}$ . **B.4.4** Eud $L_4$ uw 0 u<sub>v</sub> $L_3$ $L_1$ ud E+

### **B.4. Détecteur de position**

| B.4.5  | Si le rotor est centré, $L_1 = L_2 = L_3 = L_4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | On a donc $u_V = u_W = 0 V$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| B.4.6  | $2U_{d}(p) = (L_{1} + L_{2})pI(p) \text{ or } I(p) = \frac{U_{d}(p) - U_{V}(p)}{L_{1}p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|        | $2U_{d}(p) = \frac{L_{1} + L_{2}}{L_{1}} (U_{d}(p) - U_{v}(p)) \text{ soit } \frac{U_{v}(p)}{U_{d}(p)} = \frac{L_{2} - L_{1}}{L_{1} + L_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| B.4.7  | $L_{i} = \frac{\mu_{0}S_{d}N'^{2}}{2e_{i}}$ soit $\frac{1}{L_{i}} = k_{L}e_{i}$ avec $e_{1} = e_{0} + x$ et $e_{2} = e_{0} - x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|        | $\frac{U_{v}(p)}{U_{d}(p)} = \frac{L_{2} - L_{1}}{L_{1} + L_{2}} = \frac{1/L_{1} - 1/L_{2}}{1/L_{1} + 1/L_{2}} = \frac{(e_{0} + x) - (e_{0} - x)}{(e_{0} + x) + (e_{0} - x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|        | soit $\frac{U_v(p)}{U_d(p)} = \frac{x}{e_0}$ on a donc $k_x = \frac{1}{e_0}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| B.4.8  | Les capacités parasites sont localisées d'une part entre chaque spire du bobinage et toutes les autres spires, d'autre part entre ces spires et le noyau, et enfin entre ces spires et le câble de connexion du capteur. L'ensemble de ces capacités peut être regroupé sous forme d'une capacité globale C <sub>i</sub> , située en parallèle avec l'inductance.<br>Les résistances parasites représentent les sources de dissipation énergétique du circuit : pertes ohmiques dans le bobinage, pertes par courants de Foucault dans le noyau, pertes magnétiques dans le noyau par traînage et par hystérésis. L'ensemble de ces pertes est représente |  |  |
|        | résistance globale R, en série avec l'inductance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| B.4.9  | $- \begin{array}{c} R_i \\ L_i \\ L_i \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| B.4.10 | Les variations d'impédance $\Delta Z_i = \Delta R_i + j\omega\Delta L_i$ font intervenir pour la partie résistive, les pertes ohmiques dans le bobinage, indépendantes de la position du rotor et les pertes magnétiques $R_{mi}$ proportionnelles à l'inductance. On a donc :                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| B.4.11 | Vus les résultats précédents, la variation globale d'impédance est alors bien proportionnelle à la variation d'inductance $\Delta L_i$ : $\Delta Z_i = (k_m + j\omega)\Delta L_i$ . On retombe donc sur les résultats de la question B 4 7                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| B.4.12 | $\frac{1}{2} u'(t) = k x(u_1(t))^2 = k x U_1^2 (1 - \cos(2\omega t))$ avec U <sub>4</sub> la valeur efficace de u <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|        | La composante alternative à 40kHz est filtrée par le filtre passe-bas, on a donc :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|        | $u_{x}(t) = \langle k_{x} x (u_{d}(t))^{2} \rangle = (k_{x} U_{d}^{2}) x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|        | La tension de sortie est bien proportionnelle au déplacement relatif x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| B.4.13 | $D_{réel}(p) = \frac{k_d}{1 + 2\xi_d \frac{p}{2\pi f_d} + \left(\frac{p}{2\pi f_d}\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| B.4.14 | $k_d = 45 \text{ mV}/\mu\text{m} = 45.10^3 \text{ V}/\text{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

### **B.5** Synthèse





# **C.COMMANDE EN TRANSLATION BASCULEMENT**

| C.1.1 | $L_{P1} = 99,9 \text{ mm}$ $L_{P2} = 247,1 \text{ mm}$                                                                                                                                                                                                      |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | $L_{D1} = 123,19 \text{ mm}$ $L_{D2} = 270,21 \text{ mm}$                                                                                                                                                                                                   |  |
| C.1.2 | $d_1 = x - \tan \theta L_{D1}$ et $d_2 = x + \tan \theta L_{D2}$                                                                                                                                                                                            |  |
| C.1.3 | Entrefer palier radial : 0,45 mm soit débattement max 90µm                                                                                                                                                                                                  |  |
|       | $\tan(\theta_{\max}) = \frac{x_{\max}}{L_{D1}} = \frac{90.10^{-6}}{123,19.10^{-3}} = 730,5787807.10^{-6}$                                                                                                                                                   |  |
|       | soit $\tan^{-1}(730,5787807.10^{-6}) = 730,5786507.10^{-6}$ d'où $\tan(\theta) \approx \theta$ justifié.                                                                                                                                                    |  |
|       | On a donc $\begin{cases} d_1 = x - \theta L_{D1} \\ d_2 = x + \theta L_{D2} \end{cases}$                                                                                                                                                                    |  |
| C.1.4 | $\begin{cases} d_{T} = \beta d_{1} + d_{2} = x (\beta + 1) + \theta (L_{D2} - \beta L_{D1}) \\ d_{B} = d_{1} - d_{2} = -\theta (L_{D1} + L_{D2}) \end{cases}$                                                                                               |  |
| C.1.5 | Si $\beta = \frac{L_{D2}}{L_{D1}}$ alors $\begin{cases} d_{T} = x (\beta + 1) \\ d_{B} = -\theta (L_{D1} + L_{D2}) \end{cases}$<br>$d_{T}$ et $d_{B}$ sont proportionnelles à x et $\theta$ .                                                               |  |
| C.1.6 | • Lors d'une translation x dans le sens positif du plan V, $d_T$ étant positif, les paliers V13 et V24 sont activés positivement. Le rotor "redescend".                                                                                                     |  |
|       | • Lors d'un basculement d'angle $\theta$ positif, d <sub>B</sub> est négatif. Le PMA suivant l'axe V13 est activité positivement, par contre le PMA suivant l'axe V24 est activé négativement. Le rotor pivote dans le sens inverse au basculement $\theta$ |  |

### C.1 Principe de la commande

#### C.2 Modèle d'état



|       | On a donc $\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1/M' & 1/M' \\ 0 & 0 \\ -L_{p_1}/J & -L_{p_2}/J \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$ |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | $\operatorname{Et} \begin{bmatrix} d_{1} \\ d_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -L_{D1} & 0 \\ 1 & 0 & L_{D2} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix}$                                                                                                    |  |  |
|       | En identifiant à la forme proposée, on obtient :                                                                                                                                                                                                                                                                                                                                                       |  |  |
|       | $\mathbf{b}_1 = 1/\mathbf{M}', \ \mathbf{b}_2 = -\mathbf{L}_{P1}/\mathbf{J}, \ \mathbf{b}_3 = \mathbf{L}_{P2}/\mathbf{J}, \ \mathbf{c}_1 = -\mathbf{L}_{D1} \ \text{et} \ \mathbf{c}_2 = \mathbf{L}_{D2}.$                                                                                                                                                                                             |  |  |
| C.2.4 | Un système est dit à état entièrement commandable, si par action sur l'entrée, on peut atteindre en temps fini n'importe quel point de l'espace d'état.                                                                                                                                                                                                                                                |  |  |
| C.2.5 | Le système est d'ordre 4, il faut calculer la matrice de commandabilité $C$ et vérifier que le rang de cette matrice est identique à l'ordre du système.                                                                                                                                                                                                                                               |  |  |
|       | $\boldsymbol{\mathcal{C}} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \mathbf{A}^3\mathbf{B} \end{bmatrix}$                                                                                                                                                                                                                                                         |  |  |
|       | $AB = \begin{bmatrix} b_1 & b_1 \\ 0 & 0 \\ b_2 & b_3 \\ 0 & 0 \end{bmatrix} \text{ et } A^2B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                        |  |  |
|       | On obtient donc $\boldsymbol{\mathcal{C}} = \begin{bmatrix} 0 & 0 & b_1 & b_1 & 0 & 0 & 0 & 0 \\ b_1 & b_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_2 & b_3 & 0 & 0 & 0 & 0 \\ b_2 & b_3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                |  |  |
|       | Le rang de $C$ est de 4. Le système est bien commandable.                                                                                                                                                                                                                                                                                                                                              |  |  |
| C.2.6 | Un système est dit, à état entièrement observable, si par observations des entrées et sorties sur<br>un intervalle de temps fini, on peut déterminer l'état initial du système.                                                                                                                                                                                                                        |  |  |
| C.2.7 | Le système est d'ordre 4, il faut calculer la matrice d'observabilité <b>O</b> et vérifier que le rang de cette matrice est identique à l'ordre du système.                                                                                                                                                                                                                                            |  |  |
|       | $O = \begin{bmatrix} C \\ CA \\ CA^{2} \\ CA^{3} \end{bmatrix}$ $Or  CA = \begin{bmatrix} 0 & 1 & 0 & c_{1} \\ 0 & 1 & 0 & c_{1} \end{bmatrix} \text{ et } CA^{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                       |  |  |
|       | $\begin{bmatrix} 0, & CA & - \\ 0 & 1 & 0 & c_2 \end{bmatrix} \stackrel{ci \ CA}{=} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                       |  |  |

|        | On obtient donc $\mathbf{O} = \begin{bmatrix} 1 & 0 & c_1 & 0 \\ 1 & 0 & c_2 & 0 \\ 0 & 1 & 0 & c_1 \\ 0 & 1 & 0 & c_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                        |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | La rang de <b>O</b> est de 4. Le système est bien observable.                                                                                                                                                                                                                                                                                                               |  |  |
| C.2.8  | $\begin{bmatrix} K \end{bmatrix} \text{ est une matrice 2 lignes et 4 colonnes. On notera} \begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \end{bmatrix}.$                                                                                                                                         |  |  |
| C.2.9  | On obtient la matrice d'évolution : $[A_{BF}] = [A] + [B][K]$                                                                                                                                                                                                                                                                                                               |  |  |
| C.2.10 | ) Toutes les valeurs propres de $[A_{BF}]$ doivent être à partie réelle strictement négative.                                                                                                                                                                                                                                                                               |  |  |
| C.2.11 | On doit avoir :                                                                                                                                                                                                                                                                                                                                                             |  |  |
|        | $\begin{bmatrix} 0 & 1 & 0 & 0 \\ -a_0 & -a_1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -a'_0 & -a'_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ b_1(K_{11} + K_{21}) & b_1(K_{12} + K_{22}) & b_1(K_{13} + K_{23}) & b_1(K_{14} + K_{24}) \\ 0 & 0 & 0 & 1 \\ b_2K_{11} + b_3K_{21} & b_2K_{12} + b_3K_{22} & b_2K_{13} + b_3K_{23} & b_2K_{14} + b_3K_{24} \end{bmatrix}$ |  |  |
|        | En identifiant terme à terme, on trouve les différents termes du correcteur. Par exemple $K_{11}$ et $K_{21}$ vérifient :                                                                                                                                                                                                                                                   |  |  |
|        | $\begin{cases} b_1 (K_{11} + K_{21}) = -a_0 \\ b_2 K_{11} + b_3 K_{21} = 0 \end{cases} \text{ soit } \begin{cases} K_{11} = -\frac{a_0 b_2}{b_1 b_2 - b_1 b_3} \\ K_{21} = \frac{a_0 b_3}{b_1 b_2 - b_1 b_3} \end{cases}.$                                                                                                                                                  |  |  |
|        | On procède de la même façon pour les 6 autres coefficients.                                                                                                                                                                                                                                                                                                                 |  |  |

#### C.3 Correction numérique



| C.3.8  | $\frac{1}{p} = \frac{T_e}{2} \frac{1+z^{-1}}{1-z^{-1}} \text{ soit}$ $s(k) = s(k-1) + T_e \frac{e(k) + e(k-1)}{2}$ Il s'agit encore d'une approximation par la méthode des rectangles (cf. schéma). | $e(k)$ $e(k-1)$ $0$ $T_e$ $Aire(k-1)$                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| C.3.9  |                                                                                                                                                                                                     |                                                                                                 |
|        | $C_{pi}(z) = k_{I} \left( 1 + \frac{T_{e}}{2T_{i}} \frac{1 + z^{-1}}{1 - z^{-1}} \right) = k_{I} \frac{1 + \frac{T_{e}}{2T_{i}} + \left( \frac{T_{e}}{2T_{i}} - 1 \right)}{1 - z^{-1}}$             | $\frac{\left z^{-1}\right }{z^{-1}} = \frac{c_{i0} + c_{i1}z^{-1}}{1 - z^{-1}}$                 |
|        | Soit $c_{i0} = k_I \left( \frac{T_e}{2T_i} + 1 \right)$ et $c_{i1} = k_I \left( \frac{T_e}{2T_i} - 1 \right)$                                                                                       |                                                                                                 |
| C.3.10 | $c_{i0} = 10,8125$ et $c_{i1} = -10,7874$                                                                                                                                                           |                                                                                                 |
| C.3.11 | Valeur maximale : 01111,1111111111 (3FFF) soi                                                                                                                                                       | t 15,159990234375,                                                                              |
|        | Valeur minimale : 10000,000000000 (4000) soit                                                                                                                                                       | -16.                                                                                            |
| C.3.12 | $c_{i0} = 01010,1100111111$ soit 2B3F,                                                                                                                                                              |                                                                                                 |
|        | $c_{i1} = 10101,0011011010$ soit 54DA.                                                                                                                                                              |                                                                                                 |
| C.3.13 | On risque de modifier les performances du cor<br>approxime celui calculé en continu. Cette appro<br>l'approximation de la dérivée.                                                                  | recteur. Il s'agit en fait d'un correcteur qui<br>oximation s'ajoute à celle introduite lors de |

# **D.** INFLUENCES DES MODES FLEXIBLES

# ET EFFETS GYROSCOPIQUES

## **D.1. Modélisation**

$$\begin{aligned} H_{MI}(p) &= \frac{1}{Mp^2} + \frac{k_{MI}}{1 + \left(\frac{p}{\omega_{MI}}\right)^2} \text{ avec } k_{MI} = \frac{(1 - \gamma)^2}{k'} \text{ et } \omega_{MI} = \sqrt{\frac{k'}{\gamma(1 - \gamma)M}} \\ \hline D.1.5 & k_{MI} = \frac{0,01591}{1,84.10^7} = 864,67.10^{-12} \text{ m/N} \\ et \, \omega_{MI} = \sqrt{1,84.10^7} = 4289,52 \text{ rad/s soit } f_{MI} = 682,67 \text{ Hz} \\ \hline D.1.6 & k_{MI}\omega_{MI}^2 = \frac{1 - \gamma}{\gamma M} \text{ soit } \lambda = \frac{1}{1 + k_{MI}\omega_{MI}^2 M} \\ k' &= \frac{(1 - \gamma)^2}{k_{MI}} = \frac{1}{k_{MI}} \left(\frac{k_{MI}\omega_{MI}^2 M}{1 + k_{MI}\omega_{MI}^2 M}\right)^2 \\ avec M = 12,32 \text{ kg, on obtient :} \\ \gamma = 0,836 \text{ (soit } \gamma M = 10,3 \text{ kg et } (1 - \gamma)M = 2,02 \text{ kg}) \\ k' &= 31.10^7 \text{ N/m} \end{aligned}$$

# D.2. Conséquences sur la stabilité

| D.2.1 | $H_{BOX}(p) = k_0 \left(\frac{1 + \alpha \tau_1 p}{1 + \tau_1 p}\right) \left(\frac{1 + \tau_2 p}{\tau_2 p}\right) \left(\frac{A}{1 + \frac{p}{\omega_A}}\right) \left(\frac{k_d}{1 + 2\xi_d \frac{p}{2\pi f_d} + \left(\frac{p}{2\pi f_d}\right)^2}\right) \left(\frac{1}{Mp^2} + \sum_{i=1,2} \frac{k_{Mi}}{1 + \left(\frac{p}{\omega_{Mi}}\right)^2}\right)$ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D.2.2 | La suspension est instable car pour les deux fréquences associées aux modes 1 et 2, le gain est nul et le déphasage inférieur à $-180^{\circ}$ .                                                                                                                                                                                                                |
|       | 400                                                                                                                                                                                                                                                                                                                                                             |
|       | 200<br>100<br>0 dB                                                                                                                                                                                                                                                                                                                                              |
|       | -100<br>-200<br>-300                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                 |
|       | -100<br>-150<br>-200180°<br>-200180°                                                                                                                                                                                                                                                                                                                            |
|       | -250 Inférieures<br>300<br>-360                                                                                                                                                                                                                                                                                                                                 |
|       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                            |

| D.2.3 | Pour rendre l'amortissement stable, il faudrait :                                                                                                                                                                                                                                                                                                                                                                              |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | • soit amortir le système en considérant que la raideur entre les deux masses possède un coefficient d'amortissement ; si cet amortissement ne suffit pas, il faut créer un trou de gain au niveau de $\omega_{M1}$ et $\omega_{M2}$ . Ceci est possible en ajoutant un filtre double T au correcteur. Le problème de cette solution est qu'elle fait également diminuer la phase autour de la pulsation propre $\omega_{0}$ . |
|       | • soit filtrer beaucoup plus vite après la première fréquence propre ou au contraire allonger le plus possible la bande de phase pour englober les différentes pulsations propres.                                                                                                                                                                                                                                             |
|       | Ces différentes méthodes sont difficiles à mettre en place et ne sont pas satisfaisantes. Les réglages sont peu précis car les valeurs des fréquences propres, lorsque le rotor tourne, sont modifiées par les effets gyroscopiques.                                                                                                                                                                                           |
|       | Pour passer ces vitesses critiques, on utilise un contrôle anti-balourd qui revient à créer un trou de gain à la vitesse de rotation or $\Omega = \omega$ . Les différents modes ne sont donc plus excités.                                                                                                                                                                                                                    |

## **D.3.** Effets gyroscopiques

| D.3.1 | A l'arrêt, les modes excités sont $\omega_{\rm T}$ , $\omega_{\rm B}$ , $\omega_{\rm M1}$ et $\omega_{\rm M2}$ avec $\omega_{\rm T} = (\omega_{\rm B})_{\Omega=0} = \omega_0$ .                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Pour notre application, $f_T = (f_B)_{\Omega=0} = f_0 = 83 \text{ Hz}$ , $f_{M1} = 682,7 \text{ Hz}$ et                                                                                                                |
|       | $f_{M2} = \sqrt{7,135.10^7} / 2\pi = 1344,3 \text{ Hz}.$                                                                                                                                                               |
| D.3.2 | Durant une montée en vitesse, les modes de résonance correspondant aux différents modes propres du rotor sont croisés et peuvent être potentiellement excités (diagramme de Campbell).                                 |
|       | Les points A, B, C et D, qui correspondent à des modes directs, peuvent être excités par le balourd (car tournant dans le même sens de rotation).                                                                      |
|       | Les points B', C' et D' ne sont pas excités par le balourd, mais peuvent l'être par des perturbations rétrogrades (effet de gaz autour des roues ou contact rotor stator par exemple).                                 |
|       | En général, pour les turbomachines, on ne se contente pas d'examiner les excitations liées au fondamental de la vitesse mais aussi à des multiples de cette valeur (nombre de pales des roues).                        |
| D.3.3 | La fréquence de précession du 1er mode est de 580 Hz, soit une vitesse de 34 800 tr/min. La vitesse maximale du turbocompresseur étant de 28 500 tr/min. Le turbocompresseur étudié est bien une machine sub-critique. |

# D.4. Contrôle anti-vibratoire

| D.4.1 | Il suffit d'injecter un signal $s(t) = \hat{b}\sin(\hat{\Omega}t + \hat{\phi})$ où $\hat{b}$ , $\hat{\Omega}$ et $\hat{\phi}$ sont les estimés de b, $\Omega$ et $\phi$ . En |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | effet, si le balourd est parfaitement connu, on a alors un minimum de variation de commande donc un minimum de vibrations.                                                   |
| D.4.2 | $e(t) = \sum_{i=0}^{\infty} A_i \sin(\omega_i t + \phi_i)$                                                                                                                   |

|       | $e(t) \xrightarrow{\sin(\widehat{\Omega}t)} \underbrace{\times}_{e_1(t)} \underbrace{\times}_{e'_1(t)} \underbrace{\times}_{e'_2(t)} \times$ |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $e_{1}(t) = \left(\sum_{i=0}^{\infty} A_{i} \sin\left(\omega_{i}t + \phi_{i}\right)\right) \sin\left(\widehat{\Omega}t\right) = \frac{1}{2}\sum_{i=0}^{\infty} A_{i} \left(\cos\left(\left(\omega_{i} - \widehat{\Omega}\right)t + \phi_{i}\right) - \cos\left(\left(\omega_{i} + \widehat{\Omega}\right)t + \phi_{i}\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | $e_{1}(t) = \frac{1}{2}A_{\Omega}\cos(\phi_{\Omega}) + \frac{1}{2}\sum_{i\in I/\omega_{i}\neq\bar{\Omega}}A_{i}\cos((\omega_{i}-\hat{\Omega})t + \phi_{i}) + \frac{1}{2}\sum_{i=0}^{\infty}A_{i}\cos((\omega_{i}+\hat{\Omega})t + \phi_{i})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Après filtrage passe-bas, on ne conserve que la composante continue de $e_1(t)$ soit :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | $e'_{1}(t) = \frac{1}{2}gA_{\Omega}\cos(\phi_{\Omega})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | De même, on montre que : $e'_{2}(t) = \frac{1}{2}gA_{\Omega}\sin(\phi_{\Omega})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Soit en sortie du détecteur synchrone,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | $s(t) = \frac{1}{2}gA_{\Omega}\left(\cos(\phi_{\Omega})\sin(\hat{\Omega}t) + \sin(\phi_{\Omega})\cos(\hat{\Omega}t)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | $s(t) = \frac{1}{2}gA_{\Omega}\sin\left(\hat{\Omega}t + \phi_{\Omega}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D.4.3 | On a $s(t) = \frac{1}{2}gA_{\Omega}\sin(\hat{\Omega}t + \phi_{\Omega})$ , si on choisit un gain g de 2 pour les filtres, on retrouve en sortie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | exactement la partie synchrone du signal d'entrée.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D.4.4 | Les courbes représentent la réponse du système à un balourd quasi-sinusoïdal dont la fréquence augmente progressivement avec la montée en vitesse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | On voit que l'amplitude des différentes courbes passe par un maximum lors du franchissement du mode rigide. Dès que le contrôle automatique du balourd (ABS) est enclenché, l'enveloppe de la position reste à une valeur constante. Le rotor tourne autour de son axe d'inertie naturel, en ne consommant presque plus d'énergie (courbes 2 et 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |