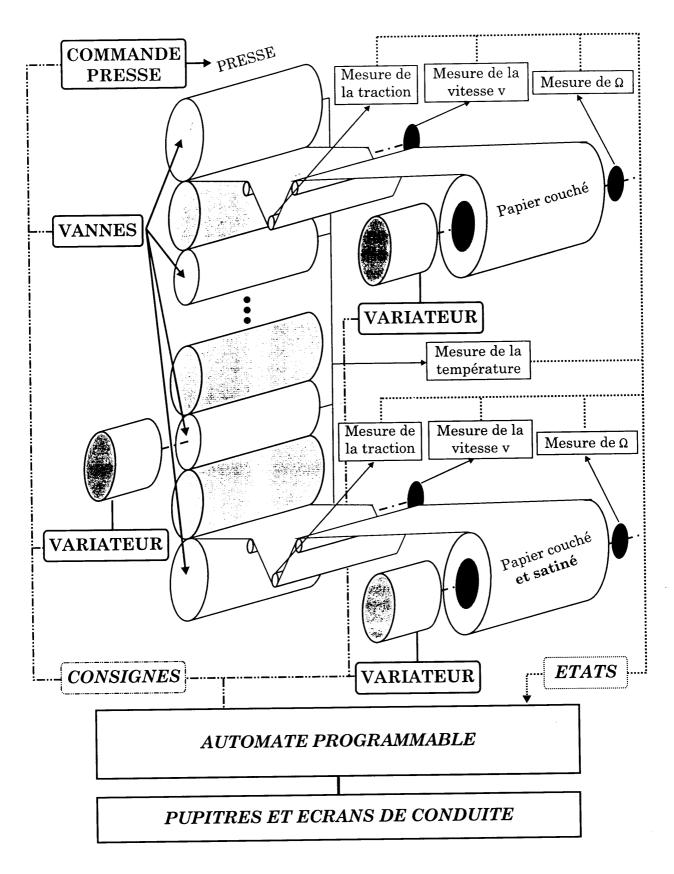

# ANNEXE 1 - SCHÉMA D'UNE SUPER CALANDRE




ANNEXE 2

ARCHITECTURE SIMPLIFIÉE D'UNE CALANDRE



# ANNEXE 3 ARCHITECTURE SIMPLIFIÉE DE LA COMMANDE



### **ANNEXE 4**

### **SPÉCIFICATIONS DE L'AD654**

### Convertisseur tension-fréquence à faible coût

Le circuit AD654 est convertisseur V/F ou I/F (selon le montage), constitué d'un amplificateur d'entrée, un oscillateur de précision (multivibrateur) et d'un étage de sortie en courant.

Il peut être utilisé en convertisseur tension/fréquence ou en convertisseur courant/fréquence. Dans le premier cas, la tension est convertie en courant par une résistance en série dans l'entrée inverseuse. Un simple réseau RC est nécessaire pour obtenir une dynamique de fréquence de sortie pouvant atteindre 500 kHz, pour une dynamique d'entrée maximale de ±30 V. L'erreur de linéarité est inférieure à 0,03% pour une dynamique de sortie de 250 kHz. La dynamique d'entré est supérieure à 80 dB. Le coefficient de température est typiquement de ±50 ppm/°C. Le circuit fonctionne avec une alimentation simple comprise entre 5 V et 36 V ou une alimentation double. Le courant consommé (non compris le transistor de sortie) est typiquement 2 mA.

L'impédance d'entrée est de 250 MΩ.

Le signal de sortie est de forme carrée. Sa fréquence est donnée, dans la configuration d'utilisation, par la relation :

$$f = \frac{I_E}{(V_0).C_f}$$
 avec  $V_0 = 10 \text{ V}.$ 

Le circuit existe en deux types de boîtiers : mini-DIP 8 connexions, SOIC, 8 connexions.

Les principales spécifications sont fournies dans le tableau de la page suivante.

### **SPÉCIFICATIONS**

| Caractéristiques                                                                                                                                                                                                                                                                                                                             | Min                   | Тур                                       | Max                                                | Unités                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| CONVERSION COURANT-FRÉQUENCE  Dynamique  Non linéarité <sup>1</sup> fmax = 250 kHz                                                                                                                                                                                                                                                           | 0                     | 0,06                                      | 500<br><b>0,1</b>                                  | kHz<br>%                                                |
| fmax = 250 kHz  fmax = 500 kHz  Erreur de calibration pleine échelle  En fonction de l'alimentation (f<250 kHz)                                                                                                                                                                                                                              |                       | 0,20                                      | 0,4                                                | %                                                       |
| Vs = 4,75 V à 5,25 V<br>Vs = 5,25 V à 16,5 V<br>En fonction de la température (0 à 70 °C)                                                                                                                                                                                                                                                    |                       | 0,20<br>0,05<br>50                        | 0,40<br>0,10                                       | %/V<br>%/V<br>ppm/°C                                    |
| AMPLIFICATEUR D'ENTRÉE  Dynamique d'entrée  alimentation simple  alimentation double  Courant d'entrée  Courant d'offset en entrée  Impédance d'entrée (entrée non inverseuse)  Tension d'offset en entrée  En fonction de l'alimentation (f<250 kHz)  Vs = 4,75 V à 5,25 V  Vs = 5,25 V à 16,5 V  En fonction de la température (0 à 70 °C) | 0<br>-Vs              | 30<br>5<br>250<br>0,5<br>0,1<br>0,03<br>4 | (+Vs - 4)<br>(+Vs - 4)<br>50<br>1,0<br>0,25<br>0,1 | V<br>V<br>nA<br>nA<br>MΩ<br>mV<br>mV/V<br>mV/V<br>μV/°C |
| INTERFACE DE SORTIE (collecteur ouvert) (Signal carré symétrique) Courant absorbé au niveau logique "0"² Vout = 0,4 V max, 25 °C Vout = 0,4 V max, 0 à 70 °C Courant résiduel de sortie, niveau logique "1" 0 à 70 °C Dynamique de la référence logique Temps de montée/descente (Cf = 0,01 µF) I <sub>E</sub> = 1 mA I <sub>E</sub> = 1 µA  | <b>10</b><br>5<br>-Vs | 20<br>10<br>10<br>50                      | <b>100</b><br>500<br>(+Vs - 4)                     | mA<br>mA<br>nA<br>nA<br>V<br>µs<br>µs                   |
| ALIMENTATION  Dynamique de fonctionnement  alimentation simple  alimentation double  Courant de repos  Vs (total) = 5 V  Vs (total) = 30 V                                                                                                                                                                                                   | 4,5<br>±5             | 1,5<br>2,0                                | 36<br>±18<br><b>2,5</b><br><b>3,0</b>              | V<br>V<br>mA<br>mA                                      |
| LIMITES DE TEMPÉRATURE<br>En fonctionnement                                                                                                                                                                                                                                                                                                  | -40                   |                                           | 85                                                 | °C                                                      |

À  $f_{max}$  = 250 kHz ; Cf = 390 pF ;  $I_{E}$  = 0-1 mA.

<sup>&</sup>lt;sup>2</sup> Le courant absorbé est celui qui peut entrer dans le collecteur, tout en maintenant une tension max de 0,4 V entre le collecteur et l'émetteur.

**ANNEXE 5** 

### TABLEAU DE QUELQUES TRANSFORMÉES USUELLES

| f(t)                                                      | F(p)                       | f(t)                                                                                            | F(p)                                  |
|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|
| К                                                         | <u>К</u><br>р              | e <sup>at</sup> .t <sup>n</sup>                                                                 | $\frac{n!}{(p-a)^{n+1}}$              |
| Kt                                                        | $\frac{K}{p^2}$            | sin ωt                                                                                          | $\frac{\omega}{(p^2+\omega^2)}$       |
| $\frac{t^{n-1}}{(n-1)!}$                                  | $\frac{1}{p^n}$            | cos ωt                                                                                          | $\frac{p}{(p^2+\omega^2)}$            |
| δ(t)                                                      | 1                          | shωt                                                                                            | $\frac{\omega}{(p^2-\omega^2)}$       |
| $f(t-t_0)$                                                | e <sup>-pt</sup> 0.F(p)    | chwt                                                                                            | $\frac{p}{(p^2-\omega^2)}$            |
| e <sup>-at</sup>                                          | 1<br>p + a                 | $\frac{1}{(\tau_1 - \tau_2)} \cdot (e^{-t/\tau_1} - e^{-t/\tau_2})$                             | $\frac{1}{(1+\tau_1)(1+\tau_2)}$      |
| t "                                                       | n!<br>p <sup>n+1</sup>     | $1 + \frac{1}{(\tau_1 - \tau_2)} \cdot (\tau_1 \cdot e^{-t\tau_1} - \tau_2 \cdot e^{-t\tau_2})$ | $\frac{1}{(1+\tau_1)(1+\tau_2)p}$     |
| 1 – e <sup>-t/τ</sup>                                     | $\frac{1}{p(1+\tau p)}$    | $1 + (\frac{a-\tau}{\tau^2}.t-1).e^{-t/\tau}$                                                   | $\frac{1+ap}{p(1+\tau p)^2}$          |
| $\frac{1}{T^n}\frac{t^{n-1}}{(n-1)!}.e^{-tT^{T}} n\geq 1$ | $\frac{1}{(1+\tau p)^n}$   | $(a - \tau)(1 - e^{-t/\tau}) + t$                                                               | $\frac{1+ap}{p^2(1+\tau p)}$          |
| $1 - \frac{t + \tau}{\tau} \cdot e^{-t/\tau}$             | $\frac{1}{p(1+\tau p)^2}$  | e <sup>-at</sup> sin ωt                                                                         | $\frac{\omega}{(p+a)^2+\omega^2}$     |
| $T(e^{-t/T} + \frac{t}{T} - 1)$                           | $\frac{1}{p^2(1+\tau p)}$  | e <sup>-at</sup> cos ωt                                                                         | $\frac{p+a}{(p+a)^2+\omega^2}$        |
| 1 + <del>a - T</del> .e <sup>-t/T</sup>                   | $\frac{1+ap}{p(1+\tau p)}$ | 1 – cos ω <i>t</i>                                                                              | $\frac{1}{p(1+\frac{p^2}{\omega^2})}$ |

### **ANNEXE 5**

## TABLEAU DE QUELQUES TRANSFORMÉES USUELLES (suite)

| f(t)                                                                                              | F(p)                                                         |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| $\frac{\omega_0}{\sqrt{1-z^2}}.e^{-z\omega_0t}\sin(\sqrt{1-z^2}\omega_0.t)$                       | $\frac{1}{1+2z\frac{p}{\omega_0}+(\frac{p}{\omega_0})^2}$    |  |
| $1 - \frac{1}{\sqrt{1-z^2}} \cdot e^{-z\omega_0 t} \sin(\sqrt{1-z^2} \cdot \omega_0 t - \varphi)$ | $\frac{1}{p[1+2z\frac{p}{\omega_0}+(\frac{p}{\omega_0})^2]}$ |  |
| avec $\varphi = Arctan\left[\frac{\sqrt{1-z^2}}{-z}\right]$                                       | avec z<1                                                     |  |