AGRÉGATION

SESSION 2005

CONCOURS INTERNE

Section : GÉNIE ÉLECTRIQUE

Option A : ÉLECTRONIQUE ET INFORMATIQUE INDUSTRIELLE Option B : ÉLECTROTECHNIQUE ET ÉLECTRONIQUE DE PUISSANCE

ÉTUDE D'UN PROBLEME D'AUTOMATISATION

DURÉE : 6 HEURES, COEFFICIENT : 1

Aucun document n'est autorisé.

Calculatrice autorisée (conformément à la circulaire n° 99-186 du 16 novembre 1999) Convertisseur en Euro autorisé

LAVEUR SUR CHAÎNE DE TRAITEMENT ÉLECTROLYTIQUE SARREL

Ce sujet comporte 3 dossiers distincts :

Dossier de présentation, texte du sujet avec le travail demandé	11 pages
□ Documents annexes	24 pages
□ Documents réponses N°1 à 3	3 pages

Ce sujet comporte trois parties indépendantes :

Partie A: Etude du procédé de lavage des gaz.

Partie **B** : Etude de la régulation de pH.

Partie **C** : Etude de la régulation par automate.

Une lecture préalable et complète du sujet est indispensable.

Il sera tenu compte de la cohérence avec laquelle les candidats traiteront chaque partie, le jury préférant une réflexion d'ensemble de la partie abordée à un éparpillement des réponses.

Les candidats sont invités à numéroter chaque page de leur copie et à indiquer clairement le numéro de la question traitée.

Les candidats sont priés de rédiger les différentes parties du problème sur feuilles séparées et clairement repérées. Chaque question est identifiée par une police *italique* et repérées par un numéro.

Il leur est rappelé qu'ils doivent utiliser les notations propres au sujet, présenter clairement les calculs et dégager ou encadrer tous les résultats.

Tout résultat incorrectement exprimé ne sera pas pris en compte. En outre les correcteurs leur sauront gré d'écrire lisiblement et de soigner la qualité de leur copie.

Il sera tenu compte de la qualité de rédaction, en particulier pour les réponses aux questions ne nécessitant pas de calcul. Le correcteur attend des phrases complètes respectant la syntaxe de la langue française.

Pour la présentation des applications numériques, il est rappelé que lors du passage d'une forme littérale à son application numérique, il est recommandé aux candidats de procéder comme suit :

- après avoir rappelé la relation littérale, chaque grandeur est remplacée par sa valeur numérique en respectant la position qu'elle avait dans la relation puis le résultat numérique est donné sans calculs intermédiaires et sans omettre son unité.

Si le texte du sujet, de ses questions ou de ses annexes, vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner explicitement dans votre copie.

LAVEUR SUR CHAÎNE DE TRAITEMENT ÉLECTROLYTIQUE SARREL

Contexte industriel

La société SARREL, située à Marolles-les-Braults (Sarthe), est leader européen en métallisation électrolytique sur matières plastiques. Sa capacité de production est de 800 000 m² par an. Elle emploie 470 personnes. Ces principaux secteurs d'activité sont l'automobile (pièces décoratives ou techniques) et la parfumerie (flacons et bouchons).

Description du procédé

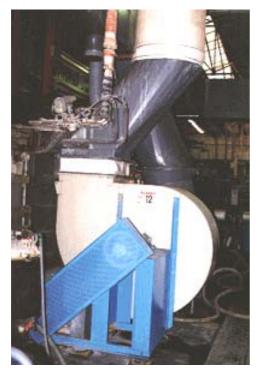
Le traitement sur matière plastique s'effectue en deux phases :

- la première phase est chimique et consiste à effectuer un satinage (attaque de la surface de la pièce pour la rendre rugueuse et adhérente) puis un nickelage ou cuivrage chimique pour obtenir une pièce conductrice.
- la seconde phase est électrolytique et consiste à déposer, par électrolyse, différentes pellicules de cuivre, nickel et chrome sur la pièce devenue conductrice.

Une chaîne de traitement de surface peut se résumer succinctement à des bains chauffés (attaque acide ou électrolyse) dans lesquels on vient déposer des pièces au moyen de robots manipulateurs. La succession des opérations à réaliser est gérée par un automate, lui-même piloté par un progiciel de traitement de surface.

Rôle et principe de fonctionnement des laveurs de gaz

Les divers bains, chauffés à des températures allant de 25 à 60°C, émettent des vapeurs qui, pour des raisons évidentes d'hygiène du travail (INRS ED651), sont collectées puis traitées (norme environnementale ISO 14 001) avant d'être rejetées dans l'atmosphère. Cette opération est réalisée au moyen de laveurs de gaz.


Le système de lavage de gaz est constitué de dispositifs de captage au niveau des cuves, d'un ventilateur extracteur et d'un laveur.

La description matérielle du système et son synoptique vous sont donnés à l'annexe 1.

Les laveurs de gaz à pulvérisation, permettent de traiter une très grande surface de contact entre le liquide et le gaz (environ 50 000 m²/m³), par le biais d'une pulvérisation très fine. Ceux-ci peuvent être soit verticaux soit horizontaux (choix fonction de l'encombrement). Ces laveurs sont conçus pour traiter des débits jusqu'à 142 000 m³/h.

Les polluants sont captés au plus près de leur point d'émission avant qu'ils ne pénètrent dans la zone respiratoire des travailleurs et avant qu'ils ne soient disséminés dans toute l'atmosphère de l'atelier. Le ventilateur aspire les vapeurs polluées au travers du laveur. Celles-ci traversent une pulvérisation très fine qui capture les substances toxiques. L'eau de lavage est en circuit fermé, une pompe de lavage permet d'amener celle-ci au niveau des buses d'aspersion. La neutralité de la solution de lavage est obtenue par ajout d'un réactif.

Du point de vue des laveurs de gaz, les bains de traitement sont regroupés par type d'émanations émises, globalement acide ou globalement basique. De ce fait, un laveur dédié à un groupe de bains dont les émanations sont acides, aura un réactif basique (exemple : lessive de soude).

Ventilateur

Laveur de gaz

Contraintes

a- Ventilation des bains de traitement

La ventilation des bains est à réaliser selon les recommandations INRS ED 651 (tableau 1, annexe 2). Les aspirations au niveau des bains peuvent être unilatérales ou bilatérales.

b- Rejet gazeux en sortie

Les normes environnementales fixent, par arrêté préfectoral, les valeurs limites d'émission de différents types de gaz (tableau 2, annexe 2).

But de l'étude

Le problème qui est présenté traite du procédé de lavage des gaz et de la mise en œuvre de la régulation de pH d'un laveur dans son contexte industriel ainsi que de sa transposition didactique.

PARTIE A

A ÉTUDE DU PROCÉDÉ DE LAVAGE DE GAZ

A.1 Dimensionnement du procédé de lavage

L'étude porte sur la collecte et le lavage des gaz émis par les bains 52 à 57 de la chaîne de traitement électrolytique (figure 1, annexe 2).

A.1.1 Détermination de la taille du laveur

- A.1.1.1 **Calculer** le débit minimal d'aspiration à mettre en oeuvre pour se conformer aux recommandations de l'INRS ED 651.
- A.1.1.2 **Déterminer** la taille mini du laveur, en vous référant à sa documentation constructeur (annexe 3).

A.1.2 <u>Vérification du dimensionnement du ventilateur</u>

Les vapeurs des bains 52 à 57 sont collectées par un réseau dont la représentation schématique est donnée en annexe 4. En première approximation, les pertes de charges ΔP de l'ensemble « laveur + réseau » peuvent se mettre sous la forme $\Delta P = \alpha \times Q^2$, où ΔP représente les pertes de charges exprimées en Pascal (Pa) et Q le débit d'air en m³/s.

- A.1.2.1 En vous référant aux caractéristiques données à l'annexe 4, **déterminer** les pertes de charges de l'ensemble « laveur + réseau » en considérant un débit nominal de Q = 45 000 m³/h.
- A.1.2.2 Le ventilateur installé est du type VCP 900 (annexe 3), **représenter** la caractéristique du réseau sur le document réponse 1 et **préciser** si le ventilateur choisi permet un fonctionnement correct de l'installation.
- A.1.2.3 Le ventilateur est entraîné par un moteur à deux vitesses de type Dahlander LS 200 L dont les caractéristiques sont données à l'annexe 5. L'accouplement se fait au moyen d'un dispositif à courroies de rapport de réduction de 0,5 et de rendement 90%. La petite vitesse est utilisée les jours de non production pour des raisons économiques. **Evaluer** le gain énergétique sur 24 h.

A.2 Étude succincte de la réaction chimique

Les vapeurs acides, en traversant les « rideaux » d'eau du laveur, cèdent leur acidité à l'eau de lavage suivant la relation suivante : $HCl + H_2O \rightarrow H_3O^+ + Cl^-$

Le pH d'une solution acide (pH < 7) est relié à la concentration en ions H_3O^+ par la formule : $pH = -\log[H_3O^+]$, où $[H_3O^+]$ représente la concentration molaire, c'est à dire le nombre de moles d'ions H_3O^+ par litre de solution.

Le pH d'une solution basique (pH > 7) est relié à la concentration en ions OH^- par la formule : $pH = 14 + \log[OH^-]$. A titre d'information, on rappelle que la mole est une quantité équivalant à 6.023×10^{23} .

A.2.1 Étude de la concentration

- A.2.1.1 Calculer la concentration molaire pour les 3 valeurs de pH: 4, 5, 6.
- A.2.1.2 **Tracer**, sur le document réponse 1, la courbe du pH en fonction de la concentration molaire (On ne fera apparaître que la portion entre pH = 4 et pH = 6). **Conclure** quant à la linéarité du système.

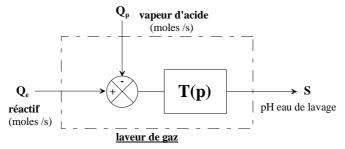
Pour une régulation aux alentours de pH = 5, on peut considérer que le système est linéaire.

A.2.1.3 **Déterminer** la valeur du gain linéaire
$$\frac{pH}{[H_3O^+]}$$
.

A.2.1.4 **Justifier** le fait qu'il serait difficile de réguler au voisinage de pH = 7.

A.2.2 <u>Étude de la neutralisation</u>

La neutralisation par ajout de réactif (lessive de soude : NaOH) se fait suivant la relation suivante : $H_3O^+ + Cl^- + NaOH \rightarrow 2H_2O + Na^+ + Cl^-$.


- A.2.2.1 **Calculer** le nombre de moles de NaOH nécessaire pour faire passer le pH de 4,9 à 5 sachant que le laveur contient 3 000 litres d'eau de lavage.
- A.2.2.2 En vous référant au tableau 3 de l'annexe 5, sachant que le réactif : lessive de soude (NaOH) (voir annexe 6), est dosé à 30,5 % et que sa densité est de 1,33 kg/l, **exprimer** la concentration molaire c représentant le nombre de moles de NaOH injectées par litre de réactif.
- A.2.2.3 **Déduire** des résultats précédents la quantité de réactif nécessaire pour ramener le pH de 4,9 à 5 dans le laveur.
- A.2.2.4 D'après la relation de neutralisation, **préciser** ce qui va se passer à plus ou moins long terme au niveau du laveur. **Proposer** une solution pour palier à ce problème.

A.3 Modélisation du laveur

A.3.1 Étude d'un modèle simplifié

Dans ce qui suit, on considère que le brassage est tel que le pH est instantanément homogène dans tout le laveur. Le laveur contient 3 000 litres d'eau de lavage et on cherche à réguler le pH autour de 5.

On considère que le laveur se présente selon le schéma suivant :

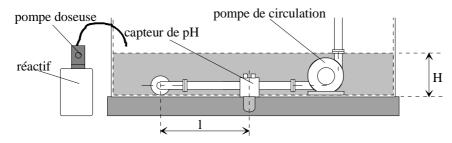
Dans le modèle suggéré, on considère que le passage des vapeurs acides à travers le laveur équivaut à un débit d'acide Q_p , l'ajout de réactif est identifié à un débit Q_e et que la sortie S correspond au pH de l'eau de lavage.

- A.3.1.1 **Justifier** les signes + et du soustracteur.
- A.3.1.2 **Montrer** que le laveur se comporte comme un intégrateur de différence de débit.
- A.3.1.3 **Donner** l'expression de T(p).

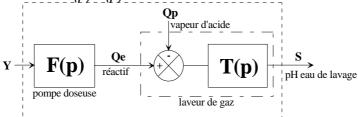
A.3.2 Étude d'un modèle plus précis du laveur

La courbe 1 de l'annexe 7 représente l'évolution du pH de l'eau de lavage lorsque le laveur fonctionne sans ajout de réactif.

A.3.2.1 **Déterminer** le débit moyen d'acide Q_p (en mole/s) équivalent aux vapeurs d'acide.


La pompe doseuse est du type mRoy (annexe 8). La variation de débit est réalisée en modulant la vitesse de rotation du moteur de la pompe, au moyen d'un variateur de fréquence. Par souci de simplification, on considèrera que le flux de réactif est continu.

- A.3.2.2 Sachant qu'un litre de réactif contient 10,14 moles de NaOH, **donner** la référence de la pompe doseuse, à mettre en place, permettant de neutraliser le débit d'acide précédemment évalué pour un fonctionnement à 40% de celle-ci.
- A.3.2.3 **Rechercher** l'expression du gain statique Q_e(mole/s)/Y(%) de l'ensemble « variateur/pompe doseuse » où Q_e représente le débit en mole/s et Y la consigne de débit en %.


A.3.3 Modélisation de l'injection de réactif

La courbe 2 de l'annexe 7 représente l'essai en boucle ouverte du laveur. La consigne de la pompe doseuse passe de 0 à 100% et on enregistre l'évolution du pH. L'essai est réalisé avec le même débit de perturbation que précédemment. L'échelle des ordonnées est telle que : une tension de 10 V correspond à pH = 14 (0V \rightarrow pH = 0).

A.3.3.1 **Justifier,** de façon qualitative, la présence d'un retard pur dans le modèle du laveur sachant que la prise de mesure se fait sur le circuit de la pompe de lavage selon le schéma ci-dessous :

A.3.3.2 En vous référant à l'annexe 8 (identification de système évolutif par la méthode de Strejc) et en assimilant la courbe réelle à celle représentée en pointillés, **rechercher** l'expression de S(p)/Y(p). **Donner** les conditions de validité du modèle.

A.4 Transposition didactique du laveur de gaz

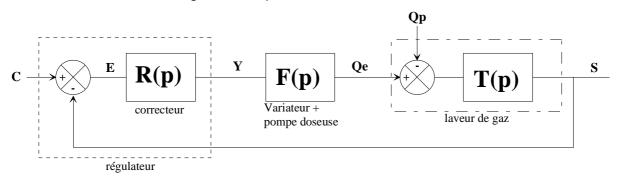
Dans cette partie, on s'intéresse à la transposition en milieu scolaire du procédé de lavage de gaz ; la frontière du système sera limitée à la régulation de pH.

A cet effet, une maquette est réalisée selon les plans de l'annexe 9. Le volume de la cuve est de 4 l. L'idée de neutralisation d'acide par une base est maintenue.

D'autre part, le captage des vapeurs acides sera simulé par l'ajout d'acide au moyen d'une pompe doseuse.

A.4.1 Préparation des solutions

- A.4.1.1 Les caractéristiques de l'acide et de la soude utilisés pour le TP sont données à l'annexe 6, **déterminer** le pH respectif de la solution d'acide et de soude.
- A.4.1.2 Pour des raisons de sécurité, on décide de travailler avec des solutions diluées d'acide et de base. **Déterminer** le mode opératoire pour obtenir une solution d'acide titrée à 0,1 mole par litre.


A.4.2 Dimensionnement de la pompe doseuse

- A.4.2.1 L'eau étant initialement à un pH de 7, **calculer** le volume d'acide (0,1 mole/litre) à introduire dans la cuve pour obtenir un pH de 5.
- A.4.2.2 Les pompes doseuses utilisées dans le TP sont du type péristaltique (voir annexe 9). Pour des raisons pédagogiques (constante de temps du système compatible avec les horaires de TP), on désire que le passage d'un pH de 5 à 4 se fasse en 1 min (en considérant que la pompe soit alimentée en permanence). **Déterminer** la référence complète de la pompe permettant de remplir au mieux les exigences ci-dessus.

PARTIE B

B ÉTUDE DE LA RÉGULATION DE pH

Le schéma fonctionnel de la régulation de pH est donné ci-dessous :

La grandeur C représente la consigne de pH, E l'erreur issue du soustracteur, Y la grandeur réglante, Qe le débit du réactif, Qp le débit équivalent d'acide apporté par les vapeurs d'acide et S la sortie du système en valeur de pH.

Les fonctions de transfert sont les suivantes :

R(p) : fonction de transfert du correcteur du régulateur,

F(p): fonction de transfert de l'injection de réactif,

T(p): fonction de transfert du laveur de gaz.

B.1 Étude de la régulation d'un modèle simplifié

Dans cette première partie on pose : F(p) = A et $T(p) = \frac{B}{p}$ A et B étant des constantes

On considère que le système reste dans son domaine linéaire.

B.1.1 Etude de la régulation proportionnelle

Le correcteur R(p) est assimilable à un gain pur K.

- B.1.1.1 **Donner** l'expression littérale de la sortie S(p) en fonction de C(p), Qp(p), K, A et B.
- B.1.1.2 **Donner** l'expression de l'erreur E(p) en fonction de C(p), $Q_p(p)$, K, A et B.

On considère que Q_p est constant $(Q_p(p) = 0)$, on applique une consigne en échelon $C(p) = C_0/p$.

- B.1.1.3 **Tracer** l'allure de la réponse indicielle de la sortie S(t).
- B.1.1.4 **Définir** le temps de réponse à 5 % en fonction de K, A et B.
- B.1.1.5 **Calcule**r l'erreur E, en régime permanent.

On considère maintenant que la consigne est constante (C(p) = 0). On applique un échelon de perturbation $Q_p(p) = Q_{p0}/p$.

- B.1.1.6 **Tracer** l'allure de la réponse indicielle de la sortie S(t).
- B.1.1.7 **Déduire** du tracé précédent, l'erreur de pH en régime permanent.
- B.1.2 Étude d'une régulation proportionnelle et intégrale

On place un correcteur PI de fonction de transfert : $R(p) = K \cdot \left(1 + \frac{1}{T_i \cdot p}\right)$

Le débit Q_p est considéré de nouveau comme constant : $Q_p(p) = 0$. On s'intéresse à l'étude de la réponse par rapport à l'entrée de consigne C.

205

- B.1.2.1 **Donner** l'allure des diagrammes asymptotiques de Bode du système en boucle ouverte de fonction de transfert $S(j\omega)/E(j\omega)$.
- B.1.2.2 On désire une marge de phase de 45° , calculer K en fonction de T_i , A et B.
- B.1.2.3 **Calculer**, pour le gain K précédent, la fonction de transfert en boucle fermée du système d'entrée C et de sortie S.
- B.1.2.4 Calculer l'erreur E de pH en régime permanent pour une consigne en échelon.

La consigne est constante : C(p) = 0, le système est en boucle fermée. Les paramètres du correcteur PI sont les mêmes que précédemment. On s'intéresse à l'étude de la réponse par rapport à l'entrée de perturbation Q_p .

- B.1.2.5 **Déterminer** la fonction de transfert du système d'entrée Q_p et de sortie S.
- B.1.2.6 En vous aidant de l'annexe mathématique (annexe 10), **établir**, pour la valeur du gain déterminé à la question B.1.2.2, la réponse indicielle S(t) à un échelon de perturbation (Qp(p) = Qp0/p) en fonction de Ti.
- B.1.2.7 **Déduire** de la réponse indicielle précédente, l'erreur de pH en régime permanent pour un échelon de perturbation Qp(p) = Qp0/p.

B.2 Étude de la régulation d'un modèle approché

Dans cette seconde partie, on pose :

$$F(p) = A$$
 et $T(p) = \frac{B}{p(1 + T \cdot p)}$ A, B et T étant des constantes.

On considère que le système reste dans son domaine linéaire.

B.2.1 Étude de la régulation proportionnelle

Le correcteur R(p) est assimilable à un gain pur K.

- B.2.1.1 **Donner** l'expression littérale de la sortie S(p) en fonction de C(p), Qp(p), K, A, B et T.
- B.2.1.2 **Donner** l'expression de l'erreur E(p) en fonction de C(p), $Q_p(p)$, K, A, B et T.
- B.2.1.3 **Donner** l'allure des diagrammes asymptotiques de Bode du système en boucle ouverte de fonction de transfert $S(j\omega)/E(j\omega)$ (On considère Qp constant : Qp(p) = 0).
- B.2.1.4 On désire une marge de phase de 45°, calculer K en fonction de A, B et T.
- B.2.1.5 Pour la valeur du gain déterminé à la question précédente, **donner** l'expression de l'erreur en régime permanent, pour un échelon de perturbation $Q_p(p) = Q_{p0}/p$.
- B.2.1.6 L'air, aspiré par le ventilateur au travers du laveur, passe dans des conduits qui se chargent, avec le temps, de dépôt d'acide. **Conclure** quant à l'efficacité de la régulation.
- B.2.1.7 En vous aidant de l'annexe mathématique (annexe 10), **établir** l'expression de la réponse s(t) à un échelon de consigne C_0 pour $Q_p = 0$.

On pose:
$$A = 2 \times 10^{-5}$$
 $B = 500$ $K = 1$ et $T = 70$ s

B.2.2 Étude de la régulation proportionnelle et intégrale

On place un correcteur PI de fonction de transfert :
$$R(p) = K \left(1 + \frac{1}{T_i \cdot p}\right)$$

B.2.2.1 **Tracer** l'allure des diagrammes asymptotiques de Bode du système, en boucle ouverte, de fonction de transfert $S(j\omega)/E(j\omega)$ (On considère Q_p constant : $Q_p(p) = 0$).

On considèrera le cas où $T_i > T > 1$.

B.2.2.2 On désire une marge de phase de 45°. En vous aidant du rappel trigonométrique de l'annexe mathématique (annexe 10), **déterminer** la valeur minimale de T_i : $T_{i \, min}$ ainsi que la valeur du gain correspondant.

On pose:
$$A = 2 \times 10^{-5}$$
 $B = 500$ et $T = 70$ s

B.3 Étude de la régulation du modèle réel

Dans cette troisième partie on pose :

F(p) = A et T(p) =
$$\frac{B.e^{-\tau.p}}{p.(1+T.p)}$$

 $A = 2 \times 10^{-5}$ $B = 500$ $\tau = 20$ s et $T = 40$ s

B.3.1 Étude de la régulation proportionnelle

Le correcteur R(p) est assimilable à un gain pur K.

- B.3.1.1 En utilisant l'approximation de Padé $e^{-\tau p} \cong \frac{1-\tau . p/2}{1+\tau . p/2}$, **exprimer** la fonction de transfert S(p)/Y(p).
- B.3.1.2 **Tracer** l'allure des diagrammes asymptotiques de Bode correspondant (document réponse 2).
- B.3.1.3 On désire obtenir une marge de phase de 45°, déterminer la valeur du gain K.
- B.3.1.4 Le régulateur de pH utilisé est un modèle dTRANS pH 01 fabriqué par JUMO (annexe 11 et annexe 12). Sur ce régulateur, le gain se définit sous forme de bande proportionnelle. **Déduire** du calcul précédant la valeur de réglage de la bande proportionnelle.

PARTIE C

C ÉTUDE DE LA RÉGULATION PAR AUTOMATE

L'entreprise dispose en réalité de 10 laveurs disséminés sur les deux chaînes de production. Ces laveurs sont gérés par un seul automate intégrant la fonction de régulation. A cette fin, la valeur du pH de l'eau de lavage est fournie par un convertisseur de mesure JUMO (voir annexe 11 à annexe 18).

La distance qui sépare un laveur de l'automate est comprise, selon le laveur, entre 25 m et 200 m.

C.1 Récupération de la valeur du pH

On se propose de comparer 2 modes de rapatriement de l'information.

C.1.1 Rapatriement des informations par voie analogique

On décide d'utiliser des convertisseurs de mesure JUMO de référence :

202530 / 00 - 888 - 000, 23 - 00 / 000 (voir annexe 13)

On décide ici d'utiliser la sortie I du convertisseur de mesure en sortie analogique de la valeur réelle du pH.

C.1.1.1 **Définir** la configuration optimale de la sortie I en tenant compte de l'installation et de ses caractéristiques.

Le convertisseur de mesure est configuré de telle sorte que l'amplitude du signal normalisé (4 – 20 mA) de la sortie I corresponde respectivement à un pH compris entre 1 et 9.

C.1.1.2 On souhaite obtenir une précision de 0, 1 pH sur l'image de la valeur affichée dans l'automate. **Déterminer** la résolution minimale du convertisseur analogique numérique.

On se propose d'utiliser la carte d'entrées analogiques référencée TSX AEY 1600 (voir annexe 22 et annexe 23). Le constructeur définit 3 719 points utiles tout en annonçant une conversion analogique numérique sur 12 bits.

- C.1.1.3 **Proposer** des éléments permettant d'expliquer l'origine de cette différence.
- C.1.1.4 Exprimer la précision obtenue sur le pH.
- C.1.1.5 La carte est équipée d'un seul convertisseur analogique numérique. **Proposer** un schéma fonctionnel de celle-ci.

C.1.2 Rapatriement des informations par voie numérique

On décide d'utiliser des convertisseurs de mesure JUMO de référence :

202530 / 00 - 000 - 000, 23 - 54 / 000 (voir annexe 13)

C.1.2.1 A partir des informations de l'annexe 24, **proposer** quatre critères cohérents permettant de comparer les liaisons RS232, RS422, RS485. **Définir** et **repérer** les caractéristiques les plus intéressantes pour l'application.

La valeur réelle du pH est rapatriée par liaison MODBUS. Les adresses MODBUS correspondront au numéro du laveur (voir annexe 14 à annexe 18).

- C.1.2.2 **Définir** le rôle du CRC16 situé en fin de trame.
- C.1.2.3 **Déterminer** la trame émise par le maître lors de la demande de la valeur du pH (valeur réelle n°1) du convertisseur de mesure du laveur numéro 7.
- C.1.2.4 **Déterminer** la trame de réponse du convertisseur si pH = 4,75 en l'absence de défaut.
- C.1.2.5 **Donner** la trame de réponse du convertisseur si ce dernier n'est pas prêt.
- C.1.2.6 **Donner** la trame de réponse du convertisseur si le CRC16 à l'émission est incorrect.

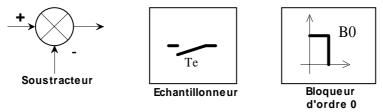
C.1.2.7 **Élaborer** l'algorithme de codage d'un réel en sa représentation « flottant simple » IEEE 754. On se limitera à l'utilisation des structures de contrôle suivantes :

```
IF...THEN ... ELSE ... END_IF,
WHILE...END_WHILE,
REPEAT...END_REPEAT,
FOR...END FOR.
```

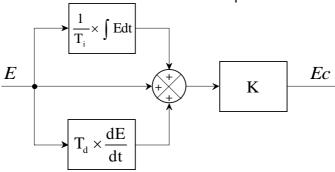
On désire rapatrier cycliquement les informations issues des 10 convertisseurs de mesure. Ceux-ci seront interrogés successivement dans l'ordre croissant de leurs adresses.

C.1.2.8 En l'absence d'erreur de transmission, **déterminer** la période minimale de scrutation d'un convertisseur garantissant une réponse.

On profite de la liaison MODBUS pour rapatrier en plus de la valeur du pH, la température du bain (Valeur réelle 2) et le code d'erreur permettant de contrôler – entre autres – l'état des électrodes.

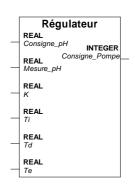

C.1.2.9 **Déterminer** la nouvelle période minimale de scrutation.

C.2 Échantillonnage


La régulation est réalisée par l'automate. La valeur du pH est rapatriée par MODBUS.

- C.2.1 Correction PID:
 - C.2.1.1 **Compléter**, sur le document réponse 3, le schéma fonctionnel de la boucle de régulation en faisant apparaître la nature (numérique ou analogique) des grandeurs.

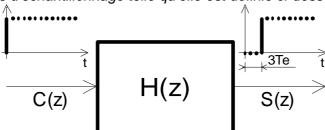
On utilisera, si nécessaire, les représentations symboliques suivantes :


Le correcteur est de type PID. Il est schématisé ci-dessous par un bloc fonctionnel en temps continu.

- C.2.1.2 En vous aidant de l'annexe mathématique (annexe 10), **établir** la fonction de transfert en z de ce correcteur $CO(z) = \frac{Ec(z)}{E(z)}$
- C.2.1.3 **Donner** son équation de récurrence sous la forme :

$$Ec_{_k} - Ec_{_{k-1}} = K_{_A} \times E_{_k} - K_{_B} \times E_{_{k-1}} + K_{_C} \times E_{_{k-2}}$$

C.2.1.4 **Écrire** le programme relatif au bloc fonctionnel <u>Régulateur</u> ci-contre suivant la norme CEI 1131-3. On utilisera le langage texte structuré en prenant soin d'apporter tous les commentaires utiles.


C.2.2 Réponse PILE:

On désire obtenir une réponse PILE au bout de 3Te.

C.2.2.1 En vous aidant de l'annexe mathématique et en prenant comme modèle en temps $continu\ G(p) = \frac{S(p)}{Y(p)} = \frac{A.B}{p.(1+T.p)},\ \textbf{exprimer}\ G(z).$

On note $H(z) = \frac{S(z)}{C(z)}$ la fonction de transfert en boucle fermée et $CO(z) = \frac{Ec(z)}{E(z)}$ celle du correcteur d'erreur.

- C.2.2.2 Exprimer CO(z) = f(H(z), G(z)).
- C.2.2.3 **Établir** la fonction de transfert CO(z) permettant d'obtenir une réponse pile au bout de 3 périodes d'échantillonnage telle qu'elle est définie ci-dessous.

C.2.2.4 Qualifier ce type de correction dans un contexte industriel

C.3 Échanges des informations entre l'automate et les laveurs

La gestion de chaque laveur, par l'automate, nécessite :

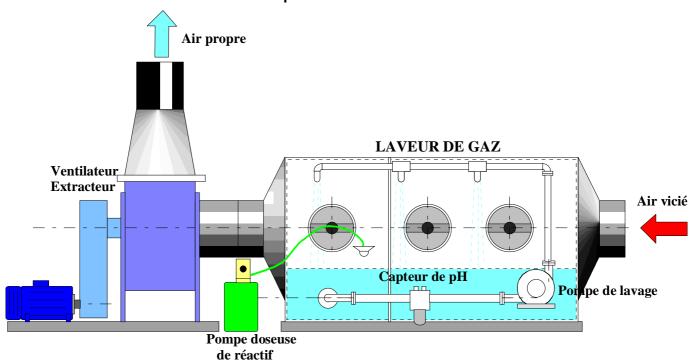
23 entrées TOR (sélection de modes de marche, comptes rendus d'états...),

6 sorties TOR (électrovannes, pompes, ventilateurs),

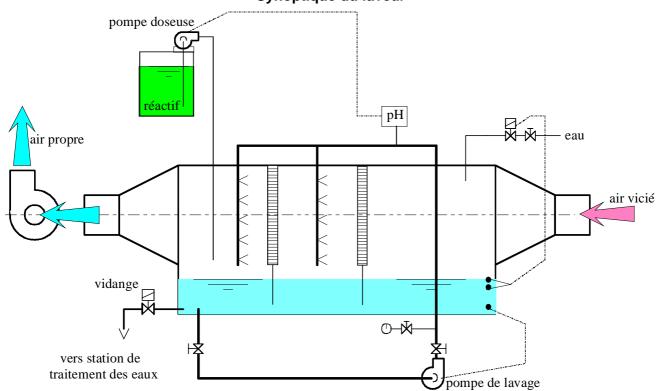
1 sortie analogique (consigne de débit de la pompe doseuse).

L'étude porte à présent sur la possibilité d'établir une liaison physique numérique entre l'automate programmable (Schneider TSX PREMIUM) gérant l'installation et l'ensemble des laveurs qui la composent.

L'échange d'informations entre laveur et automate se fait au moyen d'entrées-sorties distantes TBX connectées sur un bus FIPIO (annexe 19 à annexe 21).


Par laveur on définit 2 points de connexions sur le bus :

1^{er} point : TBX LEP 030 + TBX DES 1622 + TBX DMS 1625 2^{ème} point : TBX LEP 030 + TBS ASS 200


- C.3.1.1 Vérifier que cette configuration est supportée par tout processeur Premium TSX P57.
- C.3.1.2 Calculer le temps de cycle réseau correspondant à l'application.
- C.3.1.3 **Compléter** le synoptique de l'installation (document réponse 3) en intégrant les liaisons numériques entre les constituants principaux.

ANNEXE 1

Description matérielle du laveur

Synoptique du laveur

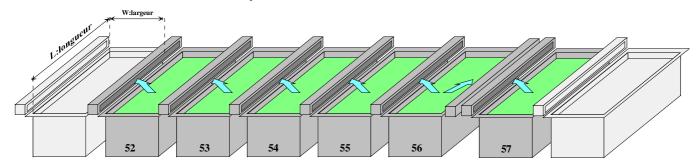
Débits surfaciques à mettre en œuvre (m³.s⁻¹.m⁻²) (d'après document INRS ED651)

Le débit d'aspiration $Q(m^3.s^{-1})$ à mettre en oeuvre est égal au produit de la surface du bain $S_b(m^2)$ par le débit par unité de surface q $(m^3.s^{-1}.m^{-2})$ fixé dans le tableau ci-dessous $(Q = S_b \times q)$:

		Aspiration	Asp	iration bilate	érale		
	W/L≤0,1	0,1 <w l≤0,25<="" td=""><td>0,25<w l≤0,5<="" td=""><td>0,5<w l≤1<="" td=""><td>W/L≤0,5</td><td>0,5<w l≤1<="" td=""><td>1<w l≤2<="" td=""></w></td></w></td></w></td></w></td></w>	0,25 <w l≤0,5<="" td=""><td>0,5<w l≤1<="" td=""><td>W/L≤0,5</td><td>0,5<w l≤1<="" td=""><td>1<w l≤2<="" td=""></w></td></w></td></w></td></w>	0,5 <w l≤1<="" td=""><td>W/L≤0,5</td><td>0,5<w l≤1<="" td=""><td>1<w l≤2<="" td=""></w></td></w></td></w>	W/L≤0,5	0,5 <w l≤1<="" td=""><td>1<w l≤2<="" td=""></w></td></w>	1 <w l≤2<="" td=""></w>
NGR :1	1,15	1,30	1,50	1,70	1,15	1,30	1,50
NGR :2	0,75	0,90	1,00	1,15	0,75	0,90	1,00
NGR:3	0,55	0,65	0,75	0,85	0,55	0,65	0,75
NGR:4	0,35	0,45	0,50	0,55	0,35	O,45	0,50

NGR : Niveau Global de Risque (de 1 à 6) (6 : correspond au risque minimal)

W: Largeur et L: Longueur de la surface


Tableau 1

Valeurs limites des rejets gazeux (d'après l'arrêté du 26 septembre 1985)

Paramètres	Valeurs limites
Acidité totale mg/Nm ³	0,5
Alcalinité mg/Nm ³	10
Chrome total mg/Nm ³	1
SO ₂ mg/Nm ³	300
NOx mg/Nm ³	205

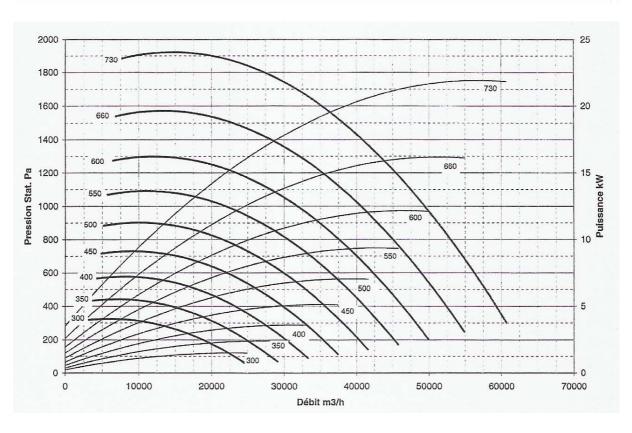
Tableau 2

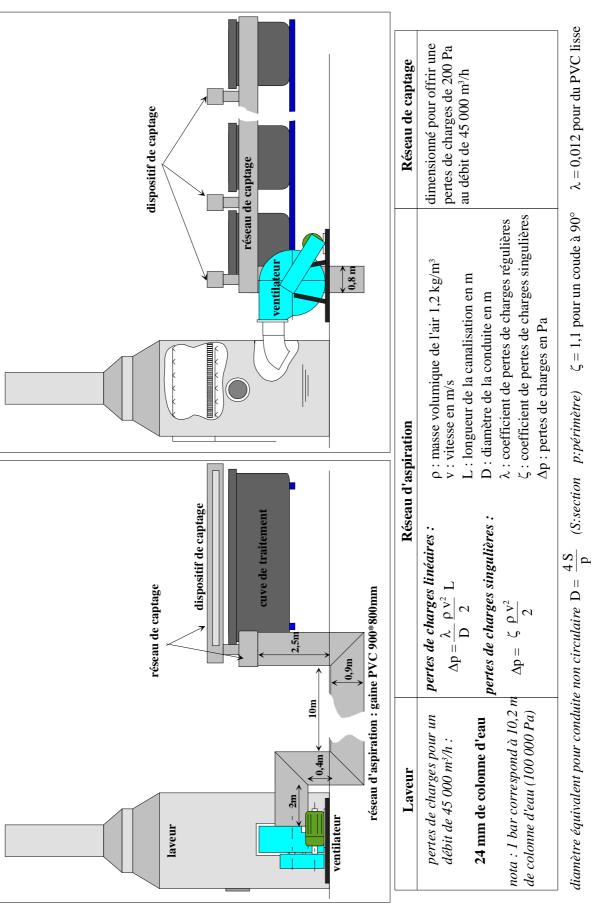
Vue partielle de la chaîne de traitement

N° Cuve	52	53	54	55	56	57
Nature bain	HNO ₃ (40%)	HNO ₃ (40%)	HNO ₃ (40%)	HCI (20%)	HCI (20%)	HCI (20%)
température	20 - 25°C	20 - 25°C	20 - 25°C	20 - 25°C	20 - 25°C	20 - 25°C
L : longueur	3,25 m	3,20 m	3,20 m	3,20 m	3,25 m	3,25 m
W : largeur	0,49 m	1 m	0,47 m	0,48 m	0,74 m	0,15 m
Aspiration	unilatérale	unilatérale	unilatérale	unilatérale	bilatérale	unilatérale
Classe	A2	A2	A2	A3	A3	A3
NGR	1	1	1	2	2	2

NGR: Niveau Global de Risque (de 1 à 6) (6 : correspond au risque minimal)

Figure 1




Laveur de gaz à pulvérisation

Type LPV à 1 étage (1 seul réactif pulvérisé)

	DEBIT	ØA	ØB	ØC	D	E	H1	H2	НЗ	H4	VOL. BASSIN
TAILLE	m3/h	mm	DE PIED (I)								
470	780/1560	470	200	200	355	1074	2793	3021	4021	5021	139
700	1730/3465	700	315	355	470	1258	3154	3424	4424	5424	308
940	3125/6245	940	400	400	590	1253	3402	3665	4665	5665	555
1250	5520/11045	1250	450	560	745	1671	4018	4312	5312	6312	982
1400	6930/13855	1400	630	630	900	1715	4072	4425	5425	6425	1232
1600	9050/18095	1600	710	710	1000	1768	4218	4538	5538	6538	1608
1900	12760/25520	1900	900	900	1150	1891	4528	4897	5897	6897	2268
2200	17105/34210	2200	1000	1000	1300	1955	4865	5220	6220	7220	3041
2500	22090/44180	2500	1120	1120	1450	2200	5321	5756	6756	7756	3927
2850	28710/57415	2850	1300	1250	1625	2420	5853	6218	7218	8218	5104
3500	43295/86590	3500	1600	1600	1950	3358	7266	7690	8690	9690	7697
4000	56550/113100	4000	1800	1800	2200	3803	8071	8565	9565	10565	10053

Eur p-Plast	Courbes caractéristiques		VCP 900
Performance curv	es	Kennlinien	

Moteurs asynchrones triphasés fermés multivitesses LS

Usage : machines centrifuges 1 bobinage (Dahlander) - PTO ou PTF IP 55 - 50 Hz - Classe F - \triangle T 80 K - 400 V - S1

	Puissance nominale à 50 Hz	Vitesse nominale	Intensité nominale	Facteur de puissance	Rendement	Courant démarrage / Courant nominal	Masse
	P_N	N _N	I _N (400V)	Cos φ	η	I_D/I_N	IM B3
Type	kW	min ⁻¹	Α		%		kg.
LS 160 M	9	1465	18.1	0.85	84.4	7.3	75
LS 160 W	2.2	725	6.2	0.63	8.08	4.1	
	11	1465	21.5	0.85	87.0	7.5	85
LS 160 M	2.8	730	7.7	0.64	81.8	4.2	
	13	1465	25.1	0.85	87.8	7.6	90
LS 160 L	3.3	725	9.1	0.63	83.3	4.1	
104001	15	1460	28.6	0.86	88.1	7.6	100
LS 160 L	3.8	725	10.1	0.65	83.6	4.2	
	18.5	1465	34.9	0.86	89.0	6.7	135
LS 180 L	4.8	730	12.1	0.67	85.2	3.7	
	22	1460	40.9	0.87	89.2	6.0	145
LS 180 LU	5.3	730	13.2	0.68	85.5	3.6	
	24	1470	45.2	0.85	90.1	7.1	170
LS 200 LT	6	730	15.4	0.65	86.6	3.7	wa wa
	30	1475	55.8	0.86	90.3	6.1	205
LS 200 L	7	735	18.6	0.63	86.0	3.8	
	37	1475	69.2	0.85	90.8	6.8	235
LS 225 SR	8.5	735	21.8	0.64	88.0	4.0	

Extrait de la classification périodique des éléments.

Chaque case contient le symbole et le nom de l'élément, son numéro atomique et sa masse molaire atomique.

1 H 1 g/mol hydrogène							He 4 g/mol hélium
Li 6,9 g/mol lithium	Be 9,0 g/mol béryllium	5 B 10,8 g/mol bore	C 12,0 g/mol carbone	N 14,0 g/mol azote	O 16,0 g/mol oxygène	9 F 19,0 g/mol fluor	Ne 20,1 g/mol néon
Na 23,0 g/mol sodium	Mg 24,3 g/mol magnésium	Al 27,0 g/mol aluminium	Si 28,1 g/mol silicium	P 31,0 g/mol phosphore	16 S 32,1 g/mol soufre	17 CI 35,5 g/mol chlore	Ar 39,9 g/mol argon
K 39,1 g/mol potassium	Ca 40,1 _{g/mol} calcium						

Tableau 3

Fiche de spécifications LESSI VE DE SOUDE CAUSTI QUE à 30,5 %

NaOH ASPECT :

Solution limpide, incolore.

CARACTERI STI QUES	METHODES	SPECIFICATIONS	VALEURS MOYEN- NES
Titre en NaOH	MC 09/06/11	30,5 % ± 0,5%	
Densité à 20°C	MC 09/06/01	1,33 à 1,34	
Hg			< 0,3 ppm
Carbonate (en Na ₂ CO ₃)			< 1 200 ppm
Chlorures (en Na Cl)			< 500 ppm
Sulfates (en Na ₂ SO ₄)			< 200 ppm
Fe			< 10 ppm

Fiche de spécifications ACIDE CHLORHYDRIQUE

$HCI.H_2O$

DESCRIPTION:

Liquide incolore à jaune. L'acide chlorhydrique est utilisé dans les industries suivantes :

- Métallurgies (décapage)
- Industries des colles et des gélatines
- Industries pharmaceutiques et photographiques
- Industries chimiques et alimentaires
- Traitement de l'eau

CARACTERISTIQUES ANALYTIQUES

PHYSICO-CHIMIQUES:

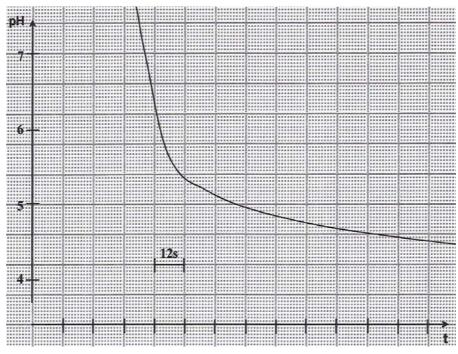
ACIDE CHLORHYDRIQUE : HCI.H₂O Poids moléculaire : 36,46 g/mol

PROPRIETES PHYSIQUES

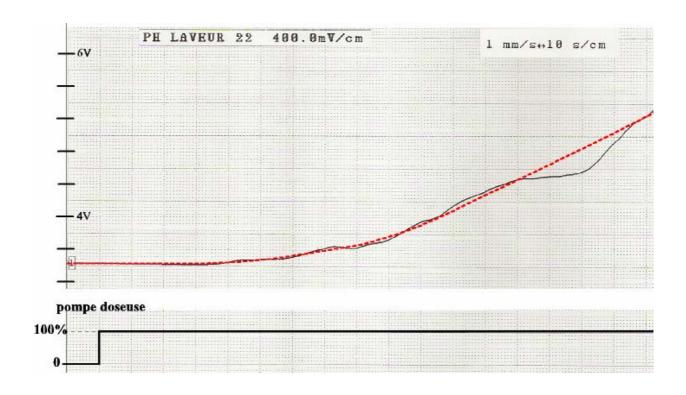
Titré > 32% Ref (Code procédure ITLA003)

Densité: 1,16 ± 0,02 Ref. (Code Procédure ITLA002)

Miscible à l'eau en toutes proportions


Réactions dangereuses avec :

Les oxydants (permanganate, eau oxygénée, chromates, persulfates, hypochlorite de soude,) avec formation de chlore (gaz toxique)


Les sulfures (dégagement d'hydrogène sulfuré)

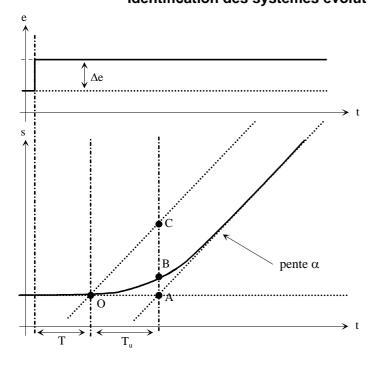
Les bases (dégagement de chaleur)

Relevés effectués sur le laveur

Courbe 1 (échelle des temps : 1 carreau = 12 s)

Courbe 2 (échelle des temps : 1 carreau = 10 s)

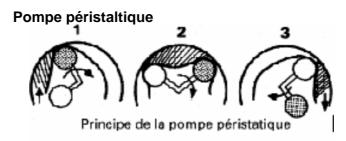
Pompes doseuses



CARACTERISTIQUES TECHNIQUES

CODE DE LA POMPE(1)	GA2	GA5	GA10	GA25	GA45	GA90	GA120	GA170
Débit maxi en l/h, à 1,5 bar (2)	2.5	5	10	22	44	83	120	170
Précision du débit dans une plage de 10 à 100 %				± 2	2 %		•	
Pression maxi d'utilisation au refoulement, en bar s			12			5	3	.5
Pression de tarage de la soupape 4 fonctions, en bars (3) : - fonction retenue			12					
Pression maxi à l'aspiration, en bars (Pasp)	2							
Hauteur d'aspiration, en mCE (Ha)				4	4			
Hauteur d'amorçage, en mCE		4				2.5		
Cadence en coups/mn (2)	36	72	144	72	144	72	14	44
Volume d'huile mécanique, en L		•	•	0,	25		•	
Niveau de bruit, en dB A				<	70			
Température ambiante de fonctionnement	-10°C - +40°C							
Température maxi des fluides pompés				-10°C -	- +40°C			

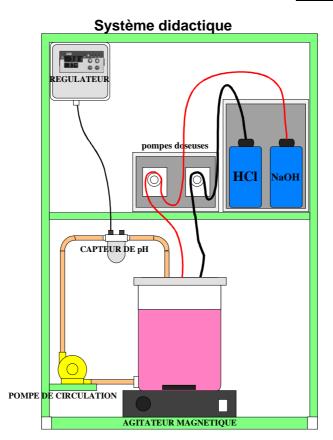
Identification des systèmes évolutifs selon la méthode de STREJC



$$F(p) = \frac{S(p)}{E(p)} = \frac{k e^{-Tp}}{p(1 + \tau p)^{n}} \text{ avec } k = \frac{\alpha}{\Delta e}$$

 $\tau \!=\! \frac{T_u}{n}$ où n est déterminé suivant le rapport AB/AC

n	1	2	3	4
AB/AC	0,37	0,27	0,255	0,195


Tête de pompe :

- Tête rotative à deux galets, contenue dans un boîtier à monter sur panneau avec un capot transparent à charnière. Cette tête se fixe sur l'arbre du moteur d'entraînement.
- Les galets à ressort garantissent la durée de vie maximum du tube.
- Le sens du débit peut être inversé en inversant le sens de rotation des galets de la tête.

Vitesse nominale en 24 V CC	Débit max ml/mn (l/h)	code
130 tr/mn	212 (12,7)	255-9598
65 tr/mn	106 (6,4)	255-9605
40 tr/mn	65 (3,9)	255-9611
20 tr/mn	32 (2,0)	255-9627
8 tr/mn	13 (0,8)	255-9649

Le débit max. est donné pour un tube de diamètre 4,8 mm.

Tubes silicone
Diamètre interne
0,5 mm
0,8 mm
1,6 mm
3,2 mm
4,8 mm
6,4 mm

Rappel de quelques transformées de Laplace

$$\frac{U}{p}$$
.....f(t) = $U \cdot \Gamma(t)$ (échelon d'amplitude U)

$$\frac{1}{1+2z\frac{p}{\omega_{n}}+\frac{p^{2}}{\omega^{2}}}.....f(t) = \frac{\omega_{n}}{\sqrt{1-z^{2}}}e^{-z\omega_{n}t}\sin\omega_{n}\sqrt{1-z^{2}}t$$

$$\frac{1}{p(1+2z\frac{p}{\omega_{n}}+\frac{p^{2}}{\omega_{n}^{2}})}.....f(t)=1+\frac{1}{\sqrt{1-z^{2}}}e^{-z\omega_{n}t}\sin(\omega_{n}\sqrt{1-z^{2}}t-\psi), avec\psi=arctg\frac{\sqrt{1-z^{2}}}{-z}$$

Rappel trigonométrique

$$tg(a-b) = \frac{tga - tgb}{1 + tga \cdot tgb}$$

Rappel de quelques transformées en z

$$\frac{1}{p}$$
..... $\frac{1}{1-z^{-1}}$

$$e^{-kT_ep}.....z^{-k}$$
 (retard pur de k.Te)

$$\frac{a}{p(p+a)}.....\frac{\left(1-\alpha\right)\!z^{-1}}{\left(1-z^{-1}\right)\!\left(1-\alpha\,z^{-1}\right)} \ \ avec \ \alpha=e^{-aT_e}$$

$$\frac{a^2}{p^2 \left(p+a\right)}..... \frac{a T_e z^{-1}}{\left(1-z^{-1}\right)^2} - \frac{\left(1-\alpha\right) \! z^{-1}}{\left(1-z^{-1}\right) \! \left(1-\alpha\ z^{-1}\right)} \quad avec \ \alpha \ = \ e^{-a T_e}$$

Rappel sur le passage de H(p) à H(z)

Dérivée (multiplication par p) : $p \rightarrow \frac{1-z^{-1}}{T_e}$

Transformée d'un système échantillonné et bloqué : $H(z) = (1-z^{-1}) \mathbf{Z} \left[\frac{H(p)}{p} \right]$

JUMO dTRANS pH 01

Régulateur/convertisseur de mesure à microprocesseur pour pH et pour tension redox

Type 202530 Boîtier pour montage encastré suivant DIN 43 700

Description sommaire

Ce régulateur/convertisseur de mesure est un modèle compact, avec une face avant de $96~\text{mm} \times 48~\text{mm}$ et un module de régulation embrochable ; il mesure et régule -selon configuration- le pH et la tension redox de solutions aqueuses.

Le convertisseur de mesure possède deux entrées analogiques et deux entrées logiques. La première entrée analogique permet de raccorder une électrode combinée de pH ou bien une électrode en verre et une électrode de référence (antimoine également possible) ou une électrode combinée de redox ou une électrode métallique et une électrode de référence. Une sonde à résistance Pt100 ou Pt1000 peut être raccordée sur la deuxième entrée analogique.


L'appareil dispose de deux afficheurs à quatre chiffres (7 segments) pour afficher la valeur réelle du pH ou le potentiel redox (rouge) et la température (vert). Durant la programmation, ces afficheurs servent à commenter la saisie.

Les tâches de régulation les plus diverses peuvent être effectuées grâce aux différents types de sorties (contacts relais et / ou sorties continues). Les deux relais avec contacts à fermeture de série de l'appareil peuvent être configurés comme valeur limite ou / et en sortie modulée en largeur/en fréquence d'impulsions ou comme régulateur à 3 plages pas à pas. Pour obtenir des sorties de régulateur proportionnel, il faut que les sorties analogiques (en option) soient configurées de manière correspondante.

Toutes les sorties de régulateur peuvent être configurées avec comportement P, PI, PD ou PID.

L'appareil propose dans sa version minimale 2 relais avec contacts à fermeture et une sortie logique (0/5V). Deux sorties supplémentaires peuvent être équipées, au choix, de relais avec contacts inverseurs/ ou sorties analogiques (pour sortie valeur réelle ou régulateur proportionnel) et / ou une interface sérielle (Profibus DP ou protocole MOD/J-Bus).

Synoptique

Type 202530 / ...

Particularités

- ☐ Forme compacte, seulement 96 x 48 x 110 mm.
- ☐ Commutation de pH à mV/ORP (potentiel redox).
- Affichage pH ou mV/ORP et température.
- Procédure de calibrage simple et conviviale.
- Possibilité de surveiller la température du milieu.
- 2 sorties analogiques à séparation galvanique 0(4) à 20 mA / 0(2) à 10 V librement configurable comme sortie de valeur réelle pour pH, redox ou température ou pour régulateur proportionnel (option).
- □ De série : 2 relais, librement programmable comme régulateur par valeur limite ou comme régulateur avec comportement P, PI, PID, régulateur PD avec largeur d'impulsions ou sortie fréquence d'impulsions ou régulateur à 3 plages pas à pas.
- 2 entrées logiques.
- ☐ 1 sortie logique (contact par alarme ou contact par limite pour la température).
- OPTION: Profibus DP ou interface sérielle RS 485 / 422 avec protocole MOD/J-Bus.
- ☐ Respect de la norme CE la plus sévère.
- ☐ Indice de protection en façade : IP 65.
- Boîtier pour montage en saillie ou boîtier de terrain IP65 sur demande.

Accessoires de série

- 2 éléments de fixation
- 1 fiche BNC
- 1 joint pour encastrement dans un tableau de commande
- 1 notice de mise en service B 20.2530.0.1
- 1 notice de mise en service B 20.2535.0.1

Accessoires en option

- Boîtier sans porte frontale
- Boîtier avec porte frontale
- Description de l'interface B 20.2530.2

Paramètres

Paramètre	Affichage	Plage de valeurs	Remarques
Tolérance de l'alarme pH / Redox	AL1	0,00 à 99,99 pH 0000 à 9999 mV	L'alarme est déclenchée, après écoulement de la temporisation de l'alarme, lorsqu'il y a dépassement de la consigne + la tolérance de l'alarme (ne concerne que les modulations de largeur d'impulsions et de fréquence d'impul- sions. Régulation par valeur limite : la tolérance est réglée de façon interne sur 0).
Temporisation de l'alarme	AL2	0 à 6000 s	Durée de la temporisation jusqu'à ce que le contact d'alarme soit activé
Bande proportionnelle 1 pH / Redox	Pb1	0,01 à 99,99 pH	
Bande proportionnelle 2 pH / Redox	Pb2	1 à 9999 mV	Influence le comportement P du régulateur.
Temps de dérivée 1	dt 1		Influence le comportement D du régulateur.
Temps de dérivée 2	dt 2	0 > 0000	Si dt=0, le régulateur 1 n'a pas de composante D.
Temps d'intégrale 1	rt 1	−0 à 9999 s	Influence le comportement I du régulateur .
Temps d'intégrale 2	rt 2	1	Si rt=0, le régulateur 1 n'a pas de composante l.
Temps d'activation minimal 1 (si valeur limite ou modulation de largeur d'impulsions) ou longueur minimale des impulsions 1 (si modulation de fréquence d'impulsions)	tr 1	-0,2 à 999,9 s	Se rapprocher des caractéristiques techniques du système de dosage (électrovanne, pompe de dosage)
Temps d'activation minimal 2 (si valeur limite ou modulation de largeur d'impulsions) ou longueur minimale des impulsions 2 (si modulation de fréquence d'impulsions)	tr 2	-U,2 & 999,9 S	
Différentiel de coupure 1 pH / Redox / Température	HYS1		
Différentiel de coupure 2 pH / Redox / Température	HYS2		Définit le point de mise au repos du contact de régulation.
Différentiel de coupure 3 pH / Redox / Température	HYS3	─0,01 à 99,99 pH _1 à 9999 mV _0,0 à 250,0 K	(s'affiche, lorsque des seuils d'alarme ont été configurés au niveau du code de configuration
Différentiel de coupure 4 pH / Redox / Température	HYS4	0,0 a 250,0 K	correspondant en fonction de la température ou du pH)
Différentiel de coupure 5 pH / Redox / Température	HYS5		
Retard à l'ouverture 1	Ond1		
Retard à l'ouverture 2	Ond2		Temporisation de l'activation du contact. (s'affiche, lorsque des seuils d'alarme ont été
Retard à l'ouverture 3	Ond3	0,2 à 999,9 s	configurés au niveau du code de configuration
Retard à l'ouverture 4	Ond4		correspondant en fonction de la température
Retard à l'ouverture 5	Ond5		ou du pH)
Retard à la fermeture 1	Ofd1		Temporisation jusqu'à ce que le contact retour-
Retard à la fermeture 2	Ofd2		ne en position de base.
Retard à la fermeture 3	Ofd3	0,2 à 999,9 s	(s'affiche, lorsque des seuils d'alarme ont été configurés au niveau du code de configuration
Retard à la fermeture 4	Ofd4		correspondant en fonction de la température
Retard à la fermeture 5	Ofd5		ou du pH)
Fréquence des impulsions 1	Fr 1	O à 150 lmm /min	Fréquence maximale des impulsions qui pilo-
Fréquence des impulsions 2	Fr 2	0 à 150 Imp./min	tent une pompe de dosage par exemple.

Identification du type

(1) Type de base

202530 Régulateur/convertisseur de mesure à microprocesseur pour pH (possibilité de commutation en potentiel redox)

(2) Extensions du type de base

- 00 Sans régulateur¹
- 10 Régulateur par valeur limite¹
- 21 Sortie modulée en largeur d'impulsions¹
- 31 Sortie modulée en fréquence d'impulsions 1

(3) Sorties I

- 000 Sans sortie
- 310 Relais, contact inverseur
- 888 Sortie de valeur réelle, configuration libre

(4) Sorties II

- 000 Sans sortie
- 310 Relais, contact inverseur²
- 888 Sortie de valeur réelle, configuration libre²

(5) Alimentation

- 22 20 à 53 V AC/DC ±0%, 48 à 63/0 Hz
- 23 110 à 240 V AC +10%/-15%, 48 à 63 Hz

(6) Interface²

- 00 Sans interface sérielle
- Interface sérielle RS422/485, protocole ModBus/J-Bus²
- 64 Profibus DP²

(7) Options^{B)}

- 000 Sans options
- O15 Sortie logique 0/12 V DC, au lieu du standard 0/5 V DC

Exemple de commande

(1) (2) (3)

(4)

(5)

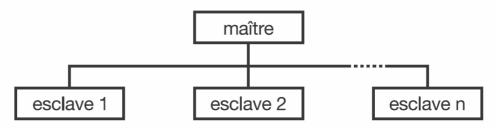
(6)²

202530/

...-..., ...-.../...

Les possibilités décrites dans l'identification du type correspondent uniquement aux **préréglages** d'usine!

Par principe, sur tous les appareils de type 202530, l'utilisateur peut régler librement l'une des configurations suivantes :


Sans régulateur / Régulateur par valeur limite / Régulateur par modulation de largeur d'impulsions avec comportement P, PI, PD, PID / Régulateur par modulation de fréquence d'impulsions avec comportement P, PI, PD, PID / Régulateur à trois plages pas à pas.

Il n'est pas possible de combiner l'interface (6) "54" ou "64" avec les sorties II (4) = "310" ou "888" (et inversement)!

Description du protocole

Principe maître-esclave

La communication entre un PC (maître) et un appareil (esclave) avec le protocole MOD-bus/J-bus a lieu selon le principe maître/esclave sous la forme demande de données/ordre-réponse.

Le maître contrôle l'échange de données, les esclaves ne donnent que des réponses. Les esclaves sont identifiés à l'aide de leur adresse-appareil. On peut adresser au maximum 255 esclaves.

Mode de transmission (RTU)

Le mode de transmission est le mode RTU (*Remote Terminal Unit*). La transmission des données s'effectue sous forme binaire (hexadécimale) sur 8 bits, 16 bits pour les valeurs entières et 32 bits pour les valeurs flottantes. Le bit de poids faible (LSB = *least significant bit*) est transmis en premier. Le code ASCII n'est pas pris en considération.

Format des données

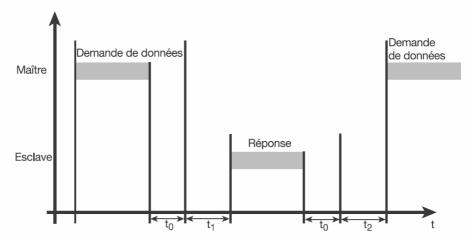
Le format des données décrit la structure d'un octet transmis. Les différents formats de données possibles sont les suivants :

Mot de données	Bit de parité	Bit de stop 1/2 bit(s)	Nombre de bits
8 Bit	_	1	9
8 Bit	pair (even)	1	10
8 Bit	impair (odd)	1	10

Adresse-appareil L'adresse-appareil de l'esclave est réglable entre 1 et 99. L'adresse-appareil 0 est réservée.

L'interface RS422/RS485 permet d'adresser au maximum 31 esclaves.

Déroulement temporel de la transmission


Le début et la fin d'un bloc de données sont caractérisés par des pauses de transmission. Entre deux caractères consécutifs, il doit s'écouler au maximum trois fois le temps de transfert d'un caractère.

Description du protocole

Communication

Demande de données

Une demande de données se déroule selon le chronogramme suivant :

- t₀ Identificateur de fin = 3 caractères.
 La durée dépend de la vitesse de transmission.
- t₁ Cette durée dépend du traitement interne.
 La durée maximale de traitement est de 250 ms.
- t₂ L'appareil a besoin de ce temps pour recommuter de l'émission en réception. Le maître laisse s'écouler ce temps avant de poser une nouvelle demande de données. Ce temps doit toujours être respecté, même si la nouvelle demande de données est envoyée à un autre appareil.

 $t_2 \ge 20 \text{ ms}$

Communication pendant la durée du traitement interne de l'esclave Pendant la durée du traitement interne d'un esclave, le maître ne peut demander aucune donnée. Pendant la durée du traitement, l'esclave ignore les demandes de données.

Communication pendant le temps de réponse de l'esclave Pendant le temps de réponse d'un esclave, le maître ne peut demander aucune donnée. Pendant la durée de la réponse, les demandes de données ont pour conséquence que toutes les données se trouvant sur le bus à ce moment ne sont pas valables.

Cas particuliers

Dans les cas suivants, l'esclave ne répond p as:

- La somme de contrôle (CRC16) est incorrecte.
- L'ordre du maître est incomplet ou contradictoire.
- Le nombre de mots ou de bits à lire est égal à0.

Description du protocole

Communication

Structure des blocs de données Tous les blocs de données ont la même structure :

Structure des données

Adresse de l'esclave	Code de la fonction	Données	Somme de contrôle CRC16
1 octet	1 octet	x octet(s)	2 octets

Chaque bloc de données contient quatre champs :

Adresse de l'esclave Adresse-appareil d'un certain esclave

Code de la fonction Choix de la fonction (lecture, écriture de mots)

Données Contient les informations :

adresse des motsnombre de motsvaleur des mots

Somme de contrôle Détection des erreurs de transmission

Traitement des erreurs

Il existe cinq codes d'erreur:

- 1 Fonction non valable
- 2 Adresse de paramètre non valable
- 3 Valeur de paramètre en dehors de la plage de valeurs¹
- 4 Esclave non prêt
- 8 Accès en écriture à un paramètre refusé

Réponse en cas d'erreur

Adresse	Fonction	Code	Somme de contrôle
de l'esclave	XX OR 80h	de l'erreur	CRC16
1 octet	1 octet	1 octet	2 octets

Le code de la fonction est associé à 0x80 à l'aide d'une fonction OU (OR), c'est-à-dire que le bit de poids fort (MSB = *Most Significant Bit*) est mis à 1.

Exemple

Demande de données :

01	02	00	00	00	04	CRC16

Réponse:

01 82 01 CRC16

¹ La plausibilité des paramètres n'est pas vérifiée.

Fonctions

Lecture de n mots

Cette fonction permet de lire n mots à une adresse définie.

Demande de données

Adresse de l'esclave	Fonction 0x03 ou 0x04	Adresse du premier mot	Nombre de mots (max. 6)	Somme de contrôle CRC16
1 octet	1 octet	2 octets	2 octets	2 octets

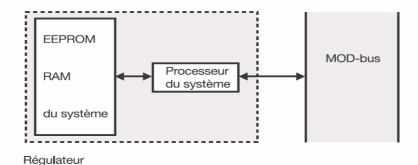
Réponse

Adresse de l'esclave	Fonction 0x03 ou 0x04	Nombre d'octets lus	Valeur du/des mot(s)	Somme de contrôle CRC16
1 octet	1 octet	1 octet	x octet(s)	2 octets

Tables d'adresses

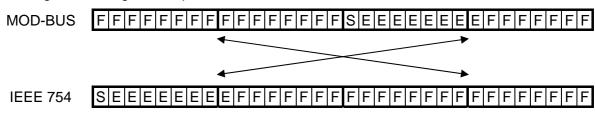
Type 202530

Données de l'appareil


Adresse	Accès	Туре	Description du paramètre
0x0301		char <i>Geraetename</i> [9+1]	Nom de l'appareil
0x0306		char SW-Version [11+1]	Version du logiciel
0x030C		char <i>VDN-Nr</i> [13+1]	Numéro VdN

Données de process du niveau Utilisateur

Adresse	Accès	Туре	Paramètre	Plage de valeur	Valeur par défaut
0x0000	R/O	float	Valeur réelle 1	–1999 à 9999	
0x0002	R/W	float	Valeur réelle 2	-58.0 à 482.0	25.0
			•	•	
0x0006	R/W	float	SP1	SPL à SPH	SPL
0x0008	R/W	float	SP2	SPL à SPH	SPH
0x000A	R/W	float	SP3	SPL à SPH	SPL
0x000C	R/W	float	SP4	SPL à SPH	SPH
0x00C2	R/O	float	Consigne act. 1		
0x00C4	R/O	float	Consigne act. 2		
0x00C6	R/O	float	Taux de mod. 1		
0x00C8	R/O	float	Taux de mod. 2		
0x00CA	R/O	long	Code d'erreur - v	oir annexe	


Flux des données

Type des données

Les explications suivantes sont valables à condition que le maître travaille avec le format IEEE-754. Avant de transmettre une valeur, les octets doivent être échangés pour que leur ordre corresponde à l'ordre imposé par le protocole MOD-bus (voir la figure).

S - bit de signe ; 1 = négatif, 0 = positif

Transmission d'une valeur décimale "550" : MOD-bus : 0x80, 0x00, 0x44, 0x09

Représentation des flottants simple précision selon IEEE 754.

Les réels sont codés sur 32 bits regroupés comme suit :

Un réel X « codable standard » s'écrit :

$$X = (-1)^{S} \times \left(1 + \frac{F}{2^{23}}\right) \times 2^{E} = (-1)^{S} \times M \times 2^{E}$$

Principe de calcul de M et E:

On s'intéresse à M = |X|.

Si le M > 1,5 il faut le diviser successivement par deux, jusqu'à obtenir M \leq 1,5 (E correspondra au nombre de divisions).

Si le M < 1, il faut le multiplier successivement par deux, jusqu'à obtenir $M \ge 1$ (E correspondra à l'opposé du nombre de multiplications).

Configuration maximale

Plate-forme d'automatisme Premium

Bus Fipio fonction gestionnaire

Configuration maximale

Le bus Fipio permet le raccordement de 128 équipements maxi. Cette limite peut, dans certain cas, être restreinte selon le type de processeur gestionnaire du bus et en fonction des équipements qui lui sont connectés. Le nombre maximal d'équipements connectables est déterminé en fonction de :

- La taille maximale de l'espace mémoire disponible pour les données Fipio qui est de : □ 94320 octets pour les processeurs Premium TSX P57 153/253/2623/353 et coprocesseur Atrium T PCX 57 353,
- $\hfill \square$ de 213104 octets pour les processeurs Premium TSX P 57/453/4823M.
- La somme des octets consommés par chaque équipement (voir tableau ci-dessous).

Famille de produits	Références	,	Taille de l'extension (octets)	Nombre maximal de points de connexion		
				TSX P57153M 63 52	253/2663/353M 127 52	453/4823M 127 62
Nombre maximal (1) d'équ	ipements Fipio					
ATV 38/58	avec carte VW3-A58301	1808				
ATV 38/58/58F avec carte VW3-A58311		1280		62	62	62
ATV 68	avec carte VW3-A68301	1280		62	62	62
Lexium MHDA	avec carte AM0 FIP 001V000	1424		62	62	62
CCX 17	T CCX 1720 F/FPS, T CCX 17●0 L/LPS	1952		4	4	4
Magelis XBT-F	avec carte TSX FPP 10	1424		62	62	62
Magelis T XBT-F, Magelis IPC, compatible PC	avec carte TSX FPP 20 (adresse 63)	-		1	1	1
Inductel, stations lect./écrit.	XGK-S130421, XGP-S1304202 avec carte VW3-A58301	1808		52	52	62
Momentum	170 ADI •••/ADO •••, 170 ADM 350 10/11, 170 ARM 370 10/390 10/30, 170 ADM 690 51, 170 ARN 120 90, 170 ARM 370 30/390 10	832		62	98	98
	170 AAI 030 00/520 40, 170 AAO 120 00/921 00, 170 AEC 920 00, 170 AMM 090 00	1808		52	52	98
	170 AAI 140 00	2304		40	40	92
TBX (2)	TBX AES 200/ASS 400(3)	1332		62	70	126
			272 (extension 2/4 voies)	59	59	126
	TBX AMS 620	1584		59	59	126
			(extens. 2 voies) (extens. 4 voies) 528 (extens. 8 voies)	50 50 44	50 50 44	100 (3) 84 (3) 63 (3)
	TBX CEP 1622/CSP 1622/1625	1152		31	31	31
	TBX DES 1600/DMS1600/DSS1600	1152		62	81	126
			144 (extension)	62	64 (4)	64 (4)
	TBX DSS 1235	1152	144 (extension)	62	72	85 (4)
	TBX DMS 1025	1152	144 (extension)	62	72	102 (4)
	TBX EEP/ESP 08C22/1622 (IP 65)	1152		62	64	126
	TBX SAP 10	1808		52	52	117
Entrées/sorties IP 67	TSX EEF 08D2/EEF 16D2	832		62	98	98
	TSX ESF 08T22/EMF 16DT2	1808		52	52	98
Micro/Premium Agent	avec carte TSX FPP 10	1424		62	62	62


Sans objet

- Sans objet
 (1) L'adresse 63 est réservée au terminal de programmation et de diagnostic.
 (2) Sur un même point de connexion Fipio, pas de mixité d'embases TOR et analogiques.
 (3) Le nombre de voies analogiques des embases TBX AES/ASS/AMS) est limité à 1008.
 (4) Le nombre de voies TOR des embases TBX DES/DMS/DSS est limité à 2048.

Références

Plate-forme d'automatisme Premium

Modules d'entrées/sorties "Tout ou Rien" distantes TBX

TBX COP 1600

TBX DES 1600

TBX DSS 1600

Module d'entrées monobloc (IP 20)						
	Tension d'e		Modularité (nb de voies)	Conformité IEC 1131-2	Référence	Masse kg
==	24 V		16	Type 1	TBX CEP 1622	0,820
Module d	e sorties m	onobloc (II	P 20)			
Nature du courant	Tension de	sortie	Modularité (nb de voies)	Caract. des voies	Référence	Masse kg
statique	24 V		16	0,5 A protégées	TBX CSP 1622	0,880
∼ ou relais	∼ 24/240 V 24 V		16	50 VA non protégées	TBX CSP 1625	0,960
	d'entrées (, , ,				
Nature du courant	Tension d'e	ntrée	Modularité (nb de voies)	Conformité IEC 1131-2	Référence	Masse kg
==	24 V		16	Type 2	TBX DES 1622	0,510
				Type 2	TBX DES 16C22	0,510
			16, filtrage progr.	Type 2	TBX DES 16F22	0,510
	48 V		16	Type 2	TBX DES 1633	0,510
$\overline{\sim}$	120 V		16	Type 2	TBX DES 16S04	0,510
Embases	de sorties	(IP 20) (1)				
Nature du courant	Tensionde s	sortie	Modularité (nb de voies)	Caract. des voies	Référence	Masse kg
 statique	24 V		16	0,5 A protégées	TBX DSS 1622	0,580
				0,5 A protégées à contrôle de fileries	TBX DSS 16C22	0,580
∼ ou relais	~ 24/240 V 24/48 V		12	100 VA non protégées	TBX DSS 1235	0,610
	~ 24/240 ∨ 24 ∨		16	50 VA non protégées	TBX DSS 1625	0,610
	d'entrées/s		•	0	P/6/	
Nature du courant	Tension d'entrée	Tension de sortie	Modularité (nb de voies)	Conformité IEC 1131-2	Référence	Masse kg
== statique	<u></u> 24 ∨	<u> </u>	8 E/8 S 0,5 A protégées	Type 2	TBX DMS 16C22	0,530
			8 E/8 S 2 A protégées	Type 2	TBX DMS 16C222	0,530
			Programma ble de 16 E/0 S à 8 E/8 S 0,5 Aprotégées	Type 2	TBX DMS 16P22	0,530
\sim ou $=$ relais	24 V	∼ 24/240 V 24 V		Type 2	TBX DMS 1025	0,540
			8 E/8 S (2)	Type 2	TBX DMS 1625	0,570
∼ triac	\sim 120 V	\sim 120 \lor 50/60 Hz	8 E/8 S (3)	Type 2	TBX DMS 16S44	0,570

⁽¹⁾ Nécessite le module de communication TBX LEP 020/030 pour constituer une base, nécessite le cache avec liaison TBX CBS 010 pour constituer une extension.

(2) Sorties 50 VA, non protégées.

Références, raccordements, encombrements

Plate-forme d'automatisme Premium

Modules d'entrées/sorties analogiques distantes TBX

Références							
	Embases analogiques (1)						
	Type d'entrées/sorties	Nombre de voies	Gammes	Référence	Masse kg		
	Entrées	4 voies	± 5 V, ± 10 V, ± 20 mV, ± 50 mV, ± 200 mV	TBX AES 400	0,280		
TBX A.SO	12 bits + signe	(2)	0-20 mA, 4-20 mA, Bas niveau ± 500 mV Thermocouples B, E, J, K, N, R, S, T Thermosondes Pt 100, Pt 1000, Ni 1000				
	Sorties isolées 11 bits	2 voies	± 10 V, 0-20 mA, 4-20 mA	TBX ASS 200	0,280		
	Entrées haut niveau 12 bits	6 voies	± 10 V, 0-5 V, 0-20 mA, 4-20 mA	TBX AMS 620	0,280		
	Sorties isolées 11 bits	2 voies	± 10 V, 0-20 mA, 4-20 mA				
	Module de communication et accessoires						
	Désignation	Connexion		Référence	Masse kg		
	Module de communication Fipio	Bus de terrain Fipio sur embases TBX		TBX LEP 030	0,280		
10	Bornier de raccordement	En dérivation ou en chaînage au bus Fipio		TBX BLP 01	0,080		
TBX LEP 030	Elément de rechange						
	Lot de 4 résistances 250 Ω ± 0,1 %	Adaptation pour gamme courant TBX AES 400		TSX AAK2	0,100		
		cache avec liais	idule de communication TBX LEP 030 pour con TBX CBS 010 pour constituer une extensinces TSX AAK2 pour adaptation en gamme o	sion.	nécessite le		

FIPIO – Calcul du temps de cycle réseau en mono tâche

Calcul du temps de cycle réseau Dans le cas d'une application ayant tous les équipements configurés dans la même tâche, la valeur du temps de cycle réseau de la tâche, en milliseconde, est obtenue, à titre indicatif, par la formule suivante :

 $TCR_TASK = 1,45 + \Sigma(K \text{ x nombre équipements de la même famille})$

Valeur du coefficient K

Le coefficient K sera défini comme ci-après :

Coefficient K	Famille	Equipement
0,5	TBX	Tout Ou Rien
0,9	TBX	Analogique

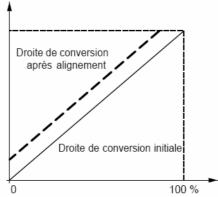
ANNEXE 22 CARTES D'ENTRÉES ANALOGIQUES

1.3-1 Caractéristiques des entrées

Module	TSX AEY 800	TSX AEY 1600	TSX AEY 810
Nombre de voies	8	16	8
Conversion analogique / numérique	12 bits (3719 points en tension/ 3836 points en courant)		16 bits (49090 points en tension/24545 points en courant)
Configuration du cycle d'acquisition	Rapide: acquisition polynomale: acquisition		
Temps de conversion	3 ms / voie		3,3 ms / voie
Tension diélectrique voies / terre	1000 V eff.		1000 V eff.
Isolement entre voies	Point commun		± 200 VDC
Isolement entre bus et voies	1000 V eff.		1000 V eff.
Surtension max. autorisée sur les entrées	±30 V en tension ±30 mA en courant		±30 V en tension ±30 mA en courant
Impédance • en tension d'entrées • en courant	10 MΩ 250Ω		10 MΩ 250Ω
Puissance dissipée max.	1,9W		3,15W
Normes	IEC1131		IEC1131,CSA222,UL508
Gamme électrique	± 10 V et 010 V 05 V et 15 V		020 mA et 420 mA
Pleine échelle (PE)	10 V	5 V	20 mA
Résolution (1)	5,38 mV	1,34 mV	5,21 μΑ
Erreur maximale à 25 °C (1) Erreur max. de 0 à 60 °C (1)	0,19%PE 0,22%PE	0,15%PE 0,22%PE	0,25%PE 0,41%PE
Dérive en température (1)	20ppm/°C	20ppm/°C	45ppm/°C
Dépassement de gamme (2)	±10,5V(±12,5V) en gamme ± 10 V -0,510,5V(-2,512,5V) engamme 010 V	05,25V(06,25V) en gamme 0 5 V 0,85,2V(06V) en gamme 15 V	021 mA (025 mA) en gamme 0 20 mA 3,2.20,8mA(0.24mA) en gamme 420 mA
Précision de la résistance interne de conversion en	1	1	0,1% - 25 ppm / °C 0,01% - 25 ppm / °C

⁽¹⁾ ces valeurs ne concernent pas le module TSX AEY 810 dont les caractéristiques sont fournies dans le tableau ci-dessous,

Cas du module TSX AEY 810


		i	i .
Gamme électrique	± 10 V et 010 V	05 V et 15 V	020 mA et 420 mA
PE (Pleine Echelle)	10 V	5 V	20 mA
Résolution	406 μV	203 μV	812 nA
Erreur maximale à 25 °C Erreur max. de 0 à 60 °C	0,244% 0,305%	0,13% 0,191%	0,142% 0,212%
Dérive en température	15,3ppm/°C	15,3ppm/°C	17,5 ppm/°C

⁽²⁾ dans le cas du TSX AEY 810 les bornes de dépassement sont configurables (voir ch3.2-2)

ANNEXE 23 CARTES D'ENTRÉES ANALOGIQUES

1.2-5 Alignement capteur

L'alignement consiste à éliminer un décalage systématique observé avec un capteur donné, autour d'un point de fonctionnement donné. On compense une erreur liée au procédé et non pas une erreur liée à l'automatisme. Pour cette raison, le remplacement d'un module ne nécessite pas un nouvel alignement, par contre, le remplacement du capteur ou le changement du point de fonctionnement de ce capteur, nécessite un nouvel alignement.

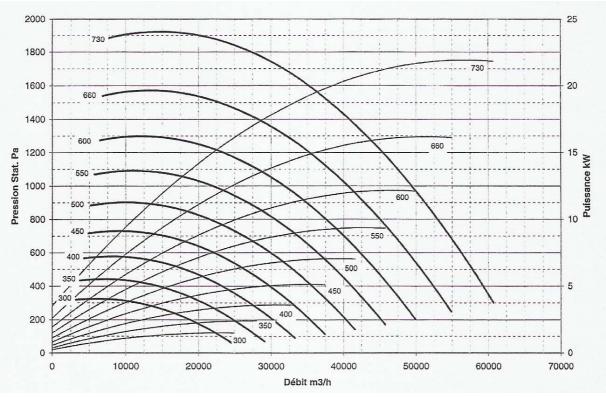
Par exemple, supposons qu'un capteur de pression, relié à un conditionneur (1mV/mB), indique 3200 mB, alors que la pression réelle est de 3210 mB. La valeur mesurée par le module en échelle normalisée sera 3200 (3,20 V). L'utilisateur peut aligner sa mesure sur la valeur 3210 (valeur souhaitée). Après cette procédure d'alignement, la voie de mesure appliquera un offset systématique de +10 sur toute nouvelle mesure. La valeur d'alignement qu'il faudra saisir est de 3210.

La valeur d'alignement est modifiable depuis une console de programmation, même si le programme est en RUN. Pour chaque voie d'entrée, l'utilisateur peut :

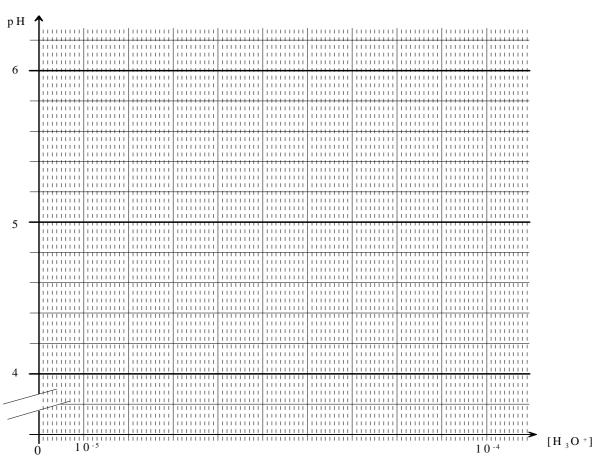
- visualiser et modifier la valeur de mesure souhaitée,
- · sauvegarder la valeur d'alignement,
- savoir si la voie possède déjà un alignement.

L'offset d'alignement peut également être modifié par programme.

L'alignement s'effectue voie en exploitation normale, sans influence sur les modes de marche de la voie du module.

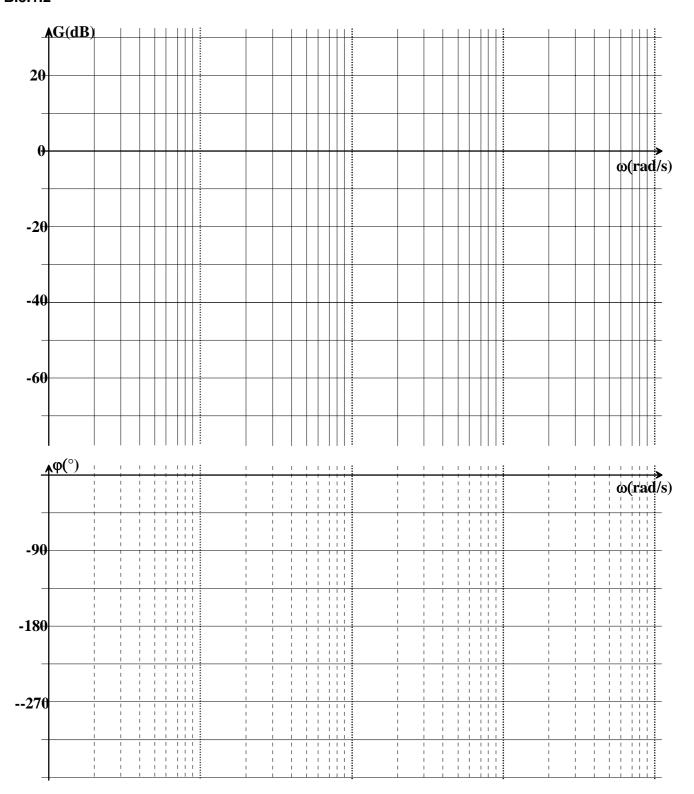

L'écart maximal entre la valeur mesurée et la valeur souhaitée (valeur alignée) ne doit pas excéder ± 1000.

ANNEXE 24 LIAISONS SÉRIES : EXTRAITS DE DOCUMENTATION

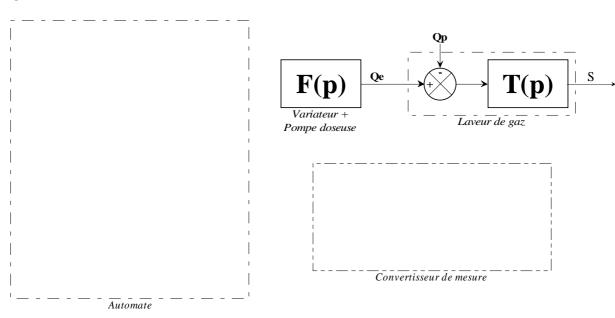

	RS 232C	RS 422	RS 485
	Command /respond		Command /respond
Protocol/	of direct Point	Command /respond	with prependin
	or direct Point		address
Comm. Signals	TX, RX, GND,	TX±, RX±, Common	TX±, RX±, Common
Commi. Signals	TX, RX, GND,	Shield	Shield
Data Format	ASCII	ASCII	ASCII
Parity	odd, even , none	odd, even , none	odd, even , none
Stop bits	1 or 2	1 or 2	1 or 2
Baud / Speed	110, 300, 600,		up to 10M often up to
-	up to 19.2k	115.2 kbits/s	115,2 kbits/s
Mode of operation	Single-ended	Differential	Differential
	Mark =False =-3V	Mark =False = R+>R-	
Input Level	to -15 VDC		by >200mv
	Space =true =+3V	Space =true = R+ <r-< td=""><td></td></r-<>	
	to +15 VDC	by >200mv	by >200mv
Receiver sensibility	± 3V	± 0.2V	± 0.2V
Vmax common	± 25V	± 7V	12V to - 7V
Mode			
Vmax emettor output	± 15V	± 5V	± 5V
input impedance	3k à 7kOhm	4 kOhm	12 kOhm
receiver			
Charge impedance	3k à 7kOhm mini	100 Ohm mini	60 Ohm mini
Cable distance	15 m	1220 m	1220 m
Timing Format	Asynchronous	Asynchronous	Asynchronous
Isolation	None	None	None
Duplex	Half , Full	Half , Full	Half , Full
	One driver, one	One driver, 10	up to 126 (with 3
			repetors)
Number of devices	receiver	receivers	up to 32 drivers
			/receivers by
			segments

DOCUMENT RÉPONSE 1

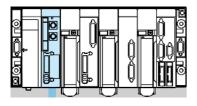
A.1.2.2

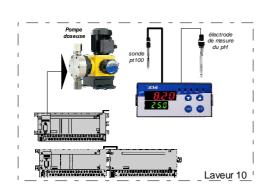


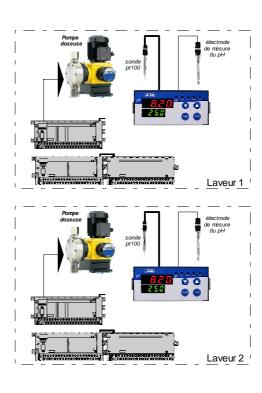
A.2.1.2


DOCUMENT RÉPONSE 2

B.3.1.2




DOCUMENT RÉPONSE 3


C.2.1.1

C.3.1.3

Synoptique de l'installation